No Arabic abstract
Using high-resolution (~85000) and high signal-to-noise ratio (~200) optical spectra acquired with the European Southern Observatory Ultraviolet and Visual Echelle Spectrograph, we have determined the interstellar column densities of C2 for six Galactic lines of sight with E(B- V) ranging from 0.33 to 1.03. For our purposes, we identified and measured absorption lines belonging to the (1, 0), (2, 0) and (3, 0) Phillips bands A1{Pi}u-X1{Sigma}+g. We report on the identification of a few lines of the C2 (4, 0) Phillips system towards HD 147889. The curve-of-growth method is applied to the equivalent widths to determine the column densities of the individual rotational levels of C2. The excitation temperature is extracted from the rotational diagrams. The physical parameters of the intervening molecular clouds (e.g. gas kinetic temperatures and densities of collision partners) were estimated by comparison with the theoretical model of excitation of C2.
We have obtained repeated images of 6 fields towards the Galactic bulge in 5 passbands (u, g, r, i, z) with the DECam imager on the Blanco 4m telescope at CTIO. From over 1.6 billion individual photometric measurements in the field centered on Baades window, we have detected 4877 putative variable stars. 474 of these have been confirmed as fundamental mode RR Lyrae stars, whose colors at minimum light yield line-of-sight reddening determinations as well as a reddening law towards the Galactic Bulge which differs significantly from the standard R_V = 3.1 formulation. Assuming that the stellar mix is invariant over the 3 square-degree field, we are able to derive a line-of-sight reddening map with sub-arcminute resolution, enabling us to obtain de-reddened and extinction corrected color-magnitude diagrams (CMDs) of this bulge field using up to 2.5 million well-measured stars. The corrected CMDs show unprecedented detail and expose sparsely populated sequences: e.g., delineation of the very wide red giant branch, structure within the red giant clump, the full extent of the horizontal branch, and a surprising bright feature which is likely due to stars with ages younger than 1 Gyr. We use the RR Lyrae stars to trace the spatial structure of the ancient stars, and find an exponential decline in density with Galactocentric distance. We discuss ways in which our data products can be used to explore the age and metallicity properties of the bulge, and how our larger list of all variables is useful for learning to interpret future LSST alerts.
We analyzed archival spectra acquired with the Hubble Space Telescope for a study of interstellar C2. Absorption from the electronic transitions, D ^1Sigma^+_u -- X ^1Sigma^+_g (0,0) as well as F ^1Pi_u -- X ^1Sigma^+_g (0,0) and (1,0), was the focus of the study. Our profile syntheses revealed that the lines of the F-X bands were broadened as a result of a perturbation involving the upper levels. Further evidence for the perturbation came from anomalies in line strength and position for the F-X (0,0) band. The perturbation likely arises from a combination of triplet-singlet interactions involving spin-orbit mixing between ^3Pi_u states and F ^1Pi_u and an avoided crossing between the ^3Pi_u states. Tunneling through a potential barrier caused by the 3 and 4 ^1Pi_u states and spin-orbit mixing with other close-lying triplet states of ungerade symmetry are less likely. Except for the broadening, lines in the F-X (1,0) band appear free from anomalies and can be used to study interstellar C2; new results for 10 sight lines are presented.
We investigate the distribution of the interstellar dust towards six small volumes of the sky in the region of the Gum nebula. New high-quality four-colour uvby and Hbeta Stromgren photometry obtained for 352 stars in six selected areas of Kapteyn, complemented with data obtained in a previous investigation for two of these areas, were used to estimate the colour excess and distance to these objects. The obtained colour excess versus distance diagrams, complemented with other information, when available, were analysed in order to infer the properties of the interstellar medium permeating the observed volumes. On the basis of the overall standard deviation in the photometric measurements, we estimate that colour excesses and distances are determined with an accuracy of 0.010 mag and better than 30%, respectively, for a sample of 520 stars. A comparison with 37 stars in common with the new Hipparcos catalogue attests to the high quality of the photometric distance determination. The obtained colour excess versus distance diagrams testify to the low density volume towards the observed lines-of-sight. Very few stars out to distances of 1 kpc from the Sun have colour excesses larger than E(b-y) = 0.1 mag. In spite of the low density character of the interstellar medium towards the Puppis-Vela direction, the obtained reddening as a function of the distance indicates that two or more interstellar structures are crossed towards the observed lines-of-sight. One of these structures may be associated with the very low density wall of the Local Cavity, which has a distance of 100-150 pc from the Sun. Another structure might be related to the Gum nebula, and if so, its front face would be located at about 350 pc from the Sun.
This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196A and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was determined from absorption lines of the Phillips A-X and Mulliken D-X systems. The width and shape of the narrow 6196A DIB profile apparently depend on the C2 temperature, being broader for higher values.
Magnetic confinement of stellar winds leads to the formation of magnetospheres, which can be sculpted into Centrifugal Magnetospheres (CMs) by rotational support of the corotating plasma. The conditions required for the CMs of magnetic early B-type stars to yield detectable emission in H$alpha$ -- the principal diagnostic of these structures -- are poorly constrained. A key reason is that no detailed study of the magnetic and rotational evolution of this population has yet been performed. Using newly determined rotational periods, modern magnetic measurements, and atmospheric parameters determined via spectroscopic modelling, we have derived fundamental parameters, dipolar oblique rotator models, and magnetospheric parameters for 56 early B-type stars. Comparison to magnetic A- and O-type stars shows that the range of surface magnetic field strength is essentially constant with stellar mass, but that the unsigned surface magnetic flux increases with mass. Both the surface magnetic dipole strength and the total magnetic flux decrease with stellar age, with the rate of flux decay apparently increasing with stellar mass. We find tentative evidence that multipolar magnetic fields may decay more rapidly than dipoles. Rotational periods increase with stellar age, as expected for a magnetic braking scenario. Without exception, all stars with H$alpha$ emission originating in a CM are 1) rapid rotators, 2) strongly magnetic, and 3) young, with the latter property consistent with the observation that magnetic fields and rotation both decrease over time.