Do you want to publish a course? Click here

A molecular superfluid: non-classical rotations in doped para-hydrogen clusters

225   0   0.0 ( 0 )
 Added by Pierre-Nicholas Roy
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Clusters of para-hydrogen (pH2) have been predicted to exhibit superfluid behavior, but direct observation of this phenomenon has been elusive. Combining experiments and theoretical simulations, we have determined the size evolution of the superfluid response of pH2 clusters doped with carbon dioxide (CO2). Reduction of the effective inertia is observed when the dopant is surrounded by the pH2 solvent. This marks the onset of molecular superfluidity in pH2. The fractional occupation of solvation rings around CO2 correlates with enhanced superfluid response for certain cluster sizes.



rate research

Read More

155 - Bo Wang , Wanrun Jiang , Xing Dai 2015
The covalent-like characteristics of hydrogen bonds offer a new perspective on intermolecular interactions. Here, using density functional theory and post-Hartree-Fock methods, we reveal that there are two bonding molecular orbitals (MOs) crossing the O and H atoms of the hydrogen-bond in water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. These results illustrate the covalent-like character of the hydrogen bond between water molecules, which contributes to the essential understanding of ice, liquid water, related materials, and life sciences.
The interplay between magic number stabilities and superfluidity of small para-hydrogen clusters with sizes $N = 5$ to 40 and temperatures $0.5 K leq T leq 4.5 $K is explored with classical and quantum Path Integral Monte Carlo calculations. Clusters with $N < 26$ and T $leq 1.5 K$ have large superfluid fractions even at the stable magic numbers 13, 19, and 23. In larger clusters, superfluidity is quenched especially at the magic numbers 23, 26, 29, 32, and 37 while below 1 K, superfluidity is recovered for the pairs $(27,28)$, $(30,31)$, and $(35,36)$. For all clusters superfluidity is localized at the surface and correlates with long exchange cycles involving loosely bound surface molecules.
Low energy electron attachment to mixed (H$_2$)$_x$/(O$_2$)$_y$ clusters and their deuterated analogues has been investigated for the first time. These experiments were carried out using liquid helium nanodroplets to form the clusters, and the effect of the added electron was then monitored via mass spectrometry. There are some important differences between electron attachment to the pure clusters and to the mixed clusters. A particularly notable feature is the formation of HO$_2$$^{-}$ and H$_2$O$^{-}$ ions from an electron-induced chemical reaction between the two dopants. The chemistry leading to these anions appears to be driven by electron resonances associated with H$_2$ rather than O$_2$. The electron resonances for H$_2$ can lead to dissociative electron attachment (DEA), just as for the free H$_2$ molecule. However, there is evidence that the resonance in H$_2$ can also lead to rapid electron transfer to O$_2$, which then induces DEA of the O$_2$. This kind of excitation transfer has not, as far as we are aware, been reported previously
It is shown that the energy absorption of a rare-gas cluster from a vacuum-ultraviolet (VUV) pulse can be traced with time-delayed extreme-ultraviolet (XUV) attosecond probe pulses by measuring the kinetic energy of the electrons detached by the probe pulse. By means of this scheme we demonstrate, that for pump pulses as short as one femtosecond, the charging of the cluster proceeds during the formation of an electronic nano-plasma inside the cluster. Using moderate harmonics for the VUV and high harmonics for the XUV pulse from the same near-infrared laser source, this scheme with well defined time delays between pump and probe pulses should be experimentally realizable. Going to even shorter pulse durations we predict that pump and probe pulses of about 250 attoseconds can induce and monitor non-equilibrium dynamics of the nano-plasma.
High intensity XUV radiation from a free-electron (FEL) was used to create a nanoplasma inside ammonia clusters with the intent of studying the resulting electron-ion interactions and their interplay with plasma evolution. In a plasma-like state, electrons with kinetic energy lower than the local collective Coulomb potential of the positive ionic core are trapped in the cluster and take part in secondary processes (e.g. electron-impact excitation/ionization and electron-ion recombination) which lead to subsequent excited and neutral molecular fragmentation. Using a time-delayed UV laser, the dynamics of the excited atomic and molecular states are probed from -0.1 ps to 18 ps. We identify three different phases of molecular fragmentation that are clearly distinguished by the effect of the probe laser on the ionic and electronic yield. We propose a simple model to rationalize our data and further identify two separate channels leading to the formation of excited hydrogen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا