In this paper we present a successful experimental test of filling a volume of 6 m$^3$ with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to {it all} sources of impurities affecting directly the argon scintillation.
The Liquid Argon Time Projection Chamber (LArTPC) is a prime type of detector for future large-mass neutrino observatories and proton decay searches. In this paper we present the design and operation, as well as experimental results from ARGONTUBE, a LArTPC being operated at the AEC-LHEP, University of Bern. The main goal of this detector is to prove the feasibility of charge drift over very long distances in liquid argon. Many other aspects of the LArTPC technology are also investigated, such as a voltage multiplier to generate high voltage in liquid argon (Greinacher circuit), a cryogenic purification system and the application of multi-photon ionization of liquid argon by a UV laser. For the first time, tracks induced by cosmic muons and UV laser beam pulses have been observed and studied at drift distances of up to 5m, the longest reached to date.
In this paper, we report on the design and operation of the LongBo time projection chamber in the Liquid Argon Purity Demonstrator cryostat. This chamber features a 2 m long drift distance. We measure the electron drift lifetime in the liquid argon using cosmic ray muons and the lifetime is at least 14 ms at 95% confidence level. LongBo is equipped with preamplifiers mounted on the detector in the liquid argon. Of the 144 channels, 128 channels were readout by preamplifiers made with discrete circuitry and 16 channels were readout by ASIC preamplifiers. For the discrete channels, we measure a signal-to-noise (S/N) ratio of 30 at a drift field of 350 V/cm. The measured S/N ratio for the ASIC channels was 1.4 times larger than that measured for the discrete channels.
In this paper we report on the evidence for ionization track signals from cosmic ray muons and Compton electrons in a Time Projection Chamber (TPC) filled with liquid Argon and doped with different fractions of Nitrogen. This study has been conducted in view of the possible use of liquid Argon/Nitrogen TPCs for the detection of gamma rays in the resonant band of the Nitrogen absorbtion spectrum, a promising technology for security and medical applications.
We have constructed a liquid Argon TPC detector with fiducial mass of 150 kg as a part of the R&D program of the next generation neutrino and nucleon decay detector. This paper describes a study of particle identification performance of the detector using well-defined charged particles (pions, kaons, and protons) with momentum of ~800 MeV/$c$ obtained at J-PARC K1.1BR beamline.
MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results. Furthermore, the angular resolution of the reconstructed muons inside the TPC is studied in simulation.
A. Curioni
,L. Epprecht
,A. Gendotti
.
(2010)
.
"Towards a liquid Argon TPC without evacuation: filling of a 6 m^3 vessel with argon gas from air to ppm impurities concentration through flushing"
.
Andre Rubbia
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا