Do you want to publish a course? Click here

On the ISS model of dynamical SUSY breaking

118   0   0.0 ( 0 )
 Added by Grigory Vartanov
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In this letter we would like to apply the superconformal index technique to give one more evidence for the theory proposed by Intriligator, Seiberg and Shenker (ISS) as being described by interacting conformal field theory in its IR fixed point.



rate research

Read More

116 - Jihn E. Kim , Bumseok Kyae 2019
Supersymmetric (SUSY) models and dynamical breaking of symmetries have been used to explain hierarchies of mass scales. We find that a chiral representation, $overline{bf 10}, oplus, overline{bf 5}, oplus, 2cdot{bf 5}$ in SUSY SU(5) in the hidden sector, breaks global SUSY dynamically, by producing a composite field $phi$ below the SU(5) confinement scale. This dynamincal SUSY breaking can have two important applications, one in particle physics and the other in cosmology. Gavitational effects transmit this dynamical breaking to the standard model(SM) superpartners and the quintessential vacuum energy. The SM superpartners feel the effects just by the magnitude of the gravitino mass while the smallness of the quintessential vacuum energy is due to the composite nature of a singlet field $phi$. The composite $phi$ carries a global charge which is hardly broken in SUSY and hence its phase can be used toward a quintessential axion for dark energy of the Universe.
183 - A. Amariti 2010
We study supersymmetry breaking metastable vacua arising from beta deformed quiver gauge theories. The relation between the bounds on metastability and the deformation are discussed. Metastable supersymmetry breaking vacua are found in the IR of beta deformed cascading quivers with vector-like field content. Furthermore the limiting case of massive Nf=Nc SQCD appears in the IR of gauge theories with chiral-like field content. We comment on the field theory origin of the deformation and on possible applications in AdS/CFT.
Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that there are generic new and striking predictions. These include new particles with masses comparable to those of the Standard Model superpartners, associated with the pseudo-Goldstone modes of the dynamical SUSY breaking sector. Consequently there is an unavoidable departure from the MSSM. In addition the gaugino masses are typically significantly lighter than the sfermions, and their mass ratios can be different from the pattern dictated by the gauge couplings in standard (i.e. explicit) gauge mediation. We investigate these features in two distinct realisations of the dynamical SUSY breaking sector.
We analyse the breakdown of supersymmetry in an ISS model in the presence of gravity, under the requirement that the cosmological constant vanishes dynamically. The gravitational backreaction is calculated in the metastable minimum and, in conjuction with the condition V=0, this is shown to generate non-zero F-terms for the squarks. Once the squarks are coupled to the messenger sector, a gauge mediation scheme is realised and it leads to a distinctive soft spectrum, with a two order of magnitude split between the gaugino and the soft scalar masses.
This is a report on our newly proposed model of dynamical supersymmetry breaking with some details of the analysis involved. The model in the simplest version has only a chiral superfield (multiplet), with a strong four-superfield interaction in the Kahler potential that induces a real two-superfield composite with vacuum condensate. The latter has supersymmetry breaking parts, which we show to bear nontrivial solution following basically a standard nonperturbative analysis for a Nambu--Jona-Lasinio type model on a superfield setting. The real composite superfield has a spin one component but is otherwise quite unconventional. We discuss also the parallel analysis for the effective theory with the composite. Plausible vacuum solutions are illustrated and analyzed. The supersymmetry breaking solutions have generated soft mass(es) for the scalar avoiding the vanishing supertrace condition for the squared-masses of the superfield components. We also present some analysis of the resulted low energy effective theory with components of the composite become dynamical. The determinant of the fermionic modes is shown to be zero illustrating the presence of the expected Goldstino. The model gives the possibility of constructing a supersymmetric standard model with all (super)symmetry breaking masses generated dynamically and directly without the necessity of complicated hidden or mediating sectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا