Do you want to publish a course? Click here

The convergence of EAS radio emission models and a detailed comparison of REAS3 and MGMR simulations

455   0   0.0 ( 0 )
 Added by Tim Huege
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the previous decade, many approaches for the modelling of radio emission from cosmic ray air showers have been developed. However, there remained significant deviations between the models, reaching from important qualitative differences such as unipolar versus bipolar pulses to large variations in the predicted absolute amplitudes of up to factors of 20. Only recently, it has been realized that in the many models predicting unipolar pulses, a radio emission contribution due to the time-variation of the number of charged particles or, equivalently, the acceleration of the particles at the beginning and the end of their trajectories, had not been taken into account. We discuss here the nature of the underlying problem and demonstrate that by including the missing contribution in REAS3, the discrepancies are reconciled. Furthermore, we show a direct comparison of REAS3 and MGMR simulations for a set of prototype showers. The results of these two completely independent and very different modelling approaches show a good level of agreement except for regions of parameter space where differences in the underlying air shower model become important. This is the first time that two radio emission models show such close concordance, illustrating that the modelling of radio emission from extensive air showers has indeed made a true breakthrough.



rate research

Read More

494 - T. Huege 2013
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been made in the understanding of the emission physics both in macroscopic and microscopic frameworks. A consistent picture has emerged: the emission stems mainly from time-varying transverse currents and a time-varying charge excess; in addition, Cherenkov-like compression of the emission due to the refractive index gradient in the atmosphere can lead to time-compression of the emitted pulses and thus high-frequency contributions in the signal. In this article, I discuss the evolution of the modelling in recent years, present the emission physics as it is understood today, and conclude with a description and comparison of the models currently being actively developed.
Studies of radio-loud (RL) broad absorption line (BAL) quasars indicate that popular orientation-based BAL models fail to account for all observations. Are these results extendable to radio-quiet (RQ) BAL quasars? Comparisons of RL and RQ BAL quasars show that many of their properties are quite similar. Here we extend these analyses to the rest-frame ultraviolet (UV) spectral properties, using a sample of 73 RL and 473 RQ BAL quasars selected from the Sloan Digital Sky Survey (SDSS). Each RQ quasar is individually matched to a RL quasar in both redshift (over the range $1.5 < z < 3.5$) and continuum luminosity. We compare several continuum, emission line, and absorption line properties, as well as physical properties derived from these measurements. Most properties in the samples are statistically identical, though we find slight differences in the velocity structure of the BALs that cause apparent differences in CIV emission line properties. Differences in the velocities may indicate an interaction between the radio jets and the absorbing material. We also find that UV FeII emission is marginally stronger in RL BAL quasars. All of these differences are subtle, so in general we conclude that RL and RQ BAL QSOs are not fundamentally different objects, except in their radio properties. They are therefore likely to be driven by similar physical phenomena, suggesting that results from samples of RL BAL quasars can be extended to their RQ counterparts.
70 - Tim Huege 2003
Extensive air showers (EAS) have been known for over 30 years to emit pulses of radio emission at frequencies from a few to a few hundred MHz, an effect that offers great opportunities for the study of EAS with the next generation of software radio interferometers such as LOFAR and LOPES. The details of the emission mechanism, however, remain rather uncertain to date. Following past suggestions that the bulk of the emission is of geomagnetic origin, we model the radio pulses as coherent geosynchrotron radiation arising from the deflection of electrons and positrons in the earths magnetic field. We analytically develop our model in a step-by-step procedure to disentangle the coherence effects arising from different scales present in the shower structure and infer which shower characteristics govern the frequency spectrum and radial dependence of the emission. The effect is unavoidable and our predictions are in good agreement with the available experimental data within their large margins of error.
56 - Marko Ristic 2021
Detailed radiative transfer simulations of kilonovae are difficult to apply directly to observations; they only sparsely cover simulation parameters, such as the mass, velocity, morphology, and composition of the ejecta. On the other hand, semianalytic models for kilonovae can be evaluated continuously over model parameters, but neglect important physical details which are not incorporated in the simulations, thus introducing systematic bias. Starting with a grid of 2D anisotropic simulations of kilonova light curves covering a wide range of ejecta properties, we apply adaptive-learning techniques to iteratively choose new simulations and produce high-fidelity surrogate models for those simulations. These surrogate models allow for continuous evaluation across model parameters while retaining the microphysical details about the ejecta. Using a new code for multimessenger inference, we demonstrate how to use our interpolated models to infer kilonova parameters. Comparing to inferences using simplified analytic models, we recover different ejecta properties. We discuss the implications of this analysis which is qualitatively consistent with similar previous work using detailed ejecta opacity calculations and which illustrates systematic challenges for kilonova modeling. An associated data and code release provides our interpolated light-curve models, interpolation implementation which can be applied to reproduce our work or extend to new models, and our multimessenger parameter inference engine.
Cosmic ray air showers emit radio pulses at MHz frequencies, which can be measured with radio antenna arrays - like LOPES at the Karlsruhe Institute of Technology in Germany. To improve the understanding of the radio emission, we test theoretical descriptions with measured data. The observables used for these tests are the absolute amplitude of the radio signal, and the shape of the radio lateral distribution. We compare lateral distributions of more than 500 LOPES events with two recent and public Monte Carlo simulation codes, REAS 3.11 and CoREAS (v 1.0). The absolute radio amplitudes predicted by REAS 3.11 are in good agreement with the LOPES measurements. The amplitudes predicted by CoREAS are lower by a factor of two, and marginally compatible with the LOPES measurements within the systematic scale uncertainties. In contrast to any previo
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا