Observation of scale invariance and universality in two-dimensional Bose gases


Abstract in English

The collective behavior of a many-body system near a continuous phase transition is insensitive to the details of its microscopic physics[1]. Characteristic features near the phase transition are that the thermodynamic observables follow generalized scaling laws[1]. The Berezinskii-Kosterlitz-Thouless (BKT) phase transition[2,3] in two-dimensional (2D) Bose gases presents a particularly interesting case because the marginal dimensionality and intrinsic scaling symmetry[4] result in a broad fluctuation regime which manifests itself in an extended range of universal scaling behavior. Studies on BKT transition in cold atoms have stimulated great interest in recent years[5-10], clear demonstration of a critical behavior near the phase transition, however, has remained an elusive goal. Here we report the observation of a scale-invariant, universal behavior of 2D gases through in-situ density and density fluctuation measurements at different temperatures and interaction strengths. The extracted thermodynamic functions confirm a wide universal region near the BKT phase transition, provide a sensitive test to the universality prediction by classical-field theory[11,12] and quantum Monte Carlo (MC) calculations[13], and point toward growing density-density correlations in the fluctuation region. Our assay raises new perspectives to explore further universal phenomena in the realm of classical and quantum critical physics.

Download