Data from the operation of a bubble chamber filled with 3.5 kg of CF$_{3}$I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg-day, consistent with a neutron background. This observation provides the strongest direct detection constraint to date on WIMP-proton spin-dependent scattering for WIMP masses $>20$ GeV/c$^{2}$.
Bubble Chambers provided the dominant particle detection technology in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on the first period of operation of an ultra-clean, room-temperature bubble chamber containing 1.5 kg of superheated CF$_{3}$I, a target maximally sensitive to spin-dependent and -independent Weakly Interacting Massive Particle (WIMP) couplings. An exposure in excess of 250 kg-days is obtained, with a live-time fraction reaching 80%. This illustrates the ability to employ bubble chambers in a new realm, the search for dark matter particles. Improved limits on the spin-dependent WIMP-proton scattering cross section are extracted from this first period. An extreme intrinsic insensitivity to the backgrounds commonly limiting these experiments (a rejection factor for photon-induced electrons of $sim10^{-10}$) has been measured in operating conditions leading to the detection of low-energy nuclear recoils such as those expected from WIMPs.
New data are reported from the operation of a 4.0 kg CF$_{3}$I bubble chamber in the 6800-foot-deep SNOLAB underground laboratory. The effectiveness of ultrasound analysis in discriminating alpha-decay background events from single nuclear recoils has been confirmed, with a lower bound of $>$99.3% rejection of alpha-decay events. Twenty single nuclear recoil event candidates and three multiple bubble events were observed during a total exposure of 553 kg-days distributed over three different bubble nucleation thresholds. The effective exposure for single bubble recoil-like events was 437.4 kg-days. A neutron background internal to the apparatus, of known origin, is estimated to account for five single nuclear recoil events and is consistent with the observed rate of multiple bubble events. This observation provides world best direct detection constraints on WIMP-proton spin-dependent scattering for WIMP masses $>$20 GeV/c$^{2}$ and demonstrates significant sensitivity for spin-independent interactions.
New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF$_3$I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C$_3$F$_8$ bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining $48.2%$ of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out.
Chiral effective field theory (EFT) provides a systematic expansion for the coupling of WIMPs to nucleons at the momentum transfers relevant to direct cold dark matter detection. We derive the currents for spin-dependent WIMP scattering off nuclei at the one-body level and include the leading long-range two-body currents, which are predicted in chiral EFT. As an application, we calculate the structure factor for spin-dependent WIMP scattering off 129,131Xe nuclei, using nuclear interactions that have been developed to study nuclear structure and double-beta decays in this region. We provide theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.
A careful reanalysis of both Argonne National Laboratory and Brookhaven National Laboratory data for weak single pion production is done. We consider deuteron nuclear effects and normalization (flux) uncertainties in both experiments. We demonstrate that these two sets of data are in good agreement. For the dipole parametrization of $C_5^A(Q^2)$, we obtain $C_5^A(0)=1.19pm 0.08$, $M_A=0.94pm 0.03$ GeV. As an application we present the discussion of the uncertainty of the neutral current 1$pi^0$ production cross section, important for the T2K neutrino oscillation experiment.
E. Behnke
,J. Behnke
,S.J. Brice
.
(2010)
.
"Improved Limits on Spin-Dependent WIMP-Proton Interactions from a Two Liter CF$_3$I Bubble Chamber"
.
Jeter Hall
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا