Do you want to publish a course? Click here

On the metallicity of open clusters I. Photometry

137   0   0.0 ( 0 )
 Added by Ernst Paunzen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metallicity is one of four free parameters typically considered when fitting isochrones to the cluster sequence. Unfortunately, this parameter is often ignored or assumed to be solar in most papers. Hence an unknown bias is introduced in the estimation of the other three cluster parameters (age, reddening and distance). Furthermore, studying the metallicity of open clusters allows us not only to derive the Galactic abundance gradient on a global scale, but also to trace the local solar environment in more detail. In a series of three papers, we investigate the current status of published metallicities for open clusters from widely different photometric and spectroscopic methods. A detailed comparison of the results allows us to establish more reliable photometric calibrations and corrections for isochrone fitting techniques. Well established databases such as WEBDA help us to perform a homogeneous analysis of available measurements for a significant number of open clusters. The literature was searched for [Fe/H] estimates on the basis of photometric calibrations in any available filter system. On the basis of results published by Tadross, we demonstrate the caveats of the calibration choice and its possible impact. In total, we find 406 individual metallicity values for 188 open clusters within 64 publications. The values were, finally, unweightedly averaged. Our final sample includes [Fe/H] values for 188 open clusters. Tracing the solar environment within 4000x4000 pc**2 we identify a patchy metallicity distribution as an extension to the Local Bubble that significantly influences the estimation of the Galactic metallicity gradient, even on a global scale. In addition, further investigations of more distant open clusters are clearly needed to obtain a more profound picture at Galactocentric distances beyond 10 000 pc.



rate research

Read More

147 - A. Calamida 2007
We present a new calibration of the Stroemgren metallicity index m1 using red giant (RG) stars in 4 globular clusters (GCs:M92,M13,NGC1851,47Tuc) with metallicity ranging from [Fe/H]=-2.2 to -0.7, marginally affected by reddening (E(B-V)<0.04) and with accurate u,v,b,y photometry.The main difference between the new metallicity-index-color (MIC) relations and similar relations available in the literature is that we adopted the u-y/v-y colors instead of the b-y.These colors present a stronger sensitivity to effective temperature, and the MIC relations show a linear slope. The difference between photometric estimates and spectroscopic measurements for RGs in M71,NGC288,NGC362,NGC6397, and NGC6752 is 0.04+/-0.03dex (sigma=0.11dex). We also apply the MIC relations to 85 field RGs with metallicity raning from [Fe/H]=-2.4 to -0.5 and accurate reddening estimates. We find that the difference between photometric estimates and spectroscopic measurements is-0.14+/-0.01dex (sig=0.17dex). We also provide two sets of MIC relations based on evolutionary models that have been transformed into the observational plane by adopting either semi-empirical or theoretical color-temperature relations. We apply the semi-empirical relations to the 9 GCs and find that the difference between photometric and spectroscopic metallicities is 0.04+/-0.03dex (sig=0.10dex).A similar agreement is found for the sample of field RGs, with a difference of -0.09+/-0.03dex (sig=0.19dex).The difference between metallicity estimates based on theoretical relations and spectroscopic measurements is -0.11+/-0.03dex (sig=0.14dex) for the 9 GGCs and -0.24+/-0.03dex (sig=0.15dex) for the field RGs. Current evidence indicates that new MIC relations provide metallicities with an intrinsic accuracy better than 0.2dex.
The effect of metallicity on the granulation activity in stars is still poorly understood. Available spectroscopic parameters from the updated APOGEE-textit{Kepler} catalog, coupled with high-precision photometric observations from NASAs textit{Kepler} mission spanning more than four years of observation, make oscillating red giant stars in open clusters crucial testbeds. We determine the role of metallicity on the stellar granulation activity by discriminating its effect from that of different stellar properties such as surface gravity, mass, and temperature. We analyze 60 known red giant stars belonging to the open clusters NGC 6791, NGC 6819, and NGC 6811, spanning a metallicity range from [Fe/H] $simeq -0.09$ to $0.32$. The parameters describing the granulation activity of these stars and their $ u_mathrm{max}$, are studied by considering the different masses, metallicities, and stellar evolutionary stages. We derive new scaling relations for the granulation activity, re-calibrate existing ones, and identify the best scaling relations from the available set of observations. We adopted the Bayesian code DIAMONDS for the analysis of the background signal in the Fourier spectra of the stars. We performed a Bayesian parameter estimation and model comparison to test the different model hypotheses proposed in this work and in the literature. Metallicity causes a statistically significant change in the amplitude of the granulation activity, with a dependency stronger than that induced by both stellar mass and surface gravity. We also find that the metallicity has a significant impact on the corresponding time scales of the phenomenon. The effect of metallicity on the time scale is stronger than that of mass. A higher metallicity increases the amplitude of granulation and meso-granulation signals and slows down their characteristic time scales toward longer periods.
From $uvby-beta$ photometry of the open clusters NGC 6811 (75 stars), and NGC 6830 (19 stars) we were able to determine membership of the stars to each cluster, and fix the age and reddening for each. Since several short period stars have recently been found, we have carried out a study of these variables.
70 - Roger E. Cohen 2016
We present wide field JHKs photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the 2MASS photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude different between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relative metal-rich ([M/H]$gtrsim$-1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2$lesssim$[M/H]$lesssim$0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.
Context. Galactic open clusters (OCs) mainly belong to the young stellar population in the Milky Way disk, but are there groups and complexes of OCs that possibly define an additional level in hierarchical star formation? Current compilations are too incomplete to address this question, especially regarding radial velocities (RVs) and metallicities ($[M/H]$). Aims. Here we provide and discuss newly obtained RV and $[M/H]$ data, which will enable us to reinvestigate potential groupings of open clusters and associations. Methods.We extracted additional RVs and $[M/H]$ from the RAdial Velocity Experiment (RAVE) via a cross-match with the Catalogue of Stars in Open Cluster Areas (CSOCA). For the identified OCs in RAVE we derived RV and $[M/H]$ from a cleaned working sample and compared the results with previous findings. Results. Although our RAVE sample does not show the same accuracy as the entire survey, we were able to derive reliable RV for 110 Galactic open clusters. For 37 OCs we publish RV for the first time. Moreover, we determined $[M/H]$ for 81 open clusters, extending the number of OCs with $[M/H]$ by 69.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا