No Arabic abstract
Strong electrically tunable exciton g-factors are observed in individual (Ga)InAs self-assembled quantum dots and the microscopic origin of the effect is explained. Realistic eight band k.p simulations quantitatively account for our observations, simultaneously reproducing the exciton transition energy, DC Stark shift, diamagnetic shift and g-factor tunability for model dots with the measured size and a comparatively low In-composition of x(In)~35% near the dot apex. We show that the observed g-factor tunability is dominated by the hole, the electron contributing only weakly. The electric field induced perturbation of the hole wavefunction is shown to impact upon the g-factor via orbital angular momentum quenching, the change of the In:Ga composition inside the envelope function playing only a minor role. Our results provide design rules for growing self-assembled quantum dots for electrical spin manipulation via electrical g-factor modulation.
Electrically tunable g-factors in quantum dots are highly desirable for applications in quantum computing and spintronics. We report giant modulation of the hole g-factor in a SiGe nanocrystal when an electric field is applied to the nanocrystal along its growth direction. We derive a contribution to the g-factor that stems from an orbital effect of the magnetic field, which lifts the Kramers degeneracy in the nanocrystal by altering the mixing between the heavy and the light holes. We show that the relative displacement between the heavy- and light-hole wave functions, occurring upon application of the electric field, has an effect on the mixing strength and leads to a strong non-monotonic modulation of the g-factor. Despite intensive studies of the g-factor since the late 50s, this mechanism of g-factor control has been largely overlooked in the literature.
Differences in the confinement of electrons and holes in quantum dots are shown to profoundly impact the magnitude of scattering with acoustic phonons in materials where crystal deformation shifts the conduction and valence band in the same direction. Using an extensive model that includes the non-Markovian nature of the phonon reservoir, we show how the effect may be addressed by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e. a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential interaction strengths and the carrier confinement and depends on the quantum dot shape. Numerical examples suggest a route towards engineering the phonon scattering.
Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the QD for various magnetic field directions. We find that the value and anisotropy of the g-factor depends on the type of orbital state which arises from the three-dimensional confinement anisotropy of the QD potential. Furthermore, the g-factor and its anisotropy are electrically tuned by a side-gate which modulates the confining potential.
We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x, the direction required for a coherent hole spin. The electrical field lies along the growth direction z and is changed over a large range, 100 kV/cm. Both electron and hole g-factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g-factor g_xh depends linearly on the electric field Fz, dg_xh/dFz = (8.3 +/- 1.2)* 10^-4 cm/kV, whereas the electron g-factor g_xe is independent of electric field, dg_xe/dFz = (0.1 +/- 0.3)* 10^-4 cm/kV (results averaged over a number of quantum dots). The dependence of g_xh on Fz is well reproduced by a 4x4 k.p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically-driven hole spin rotations via the g-tensor modulation technique and based on these results, a hole spin coupling as large as ~ 1 GHz is expected to be envisaged.
In-plane hole g-factors measured in quantum point contacts based on p-type heterostructures strongly depend on the orientation of the magnetic field with respect to the electric current. This effect, first reported a decade ago and confirmed in a number of publications, has remained an open problem. In this work, we present systematic experimental studies to disentangle different mechanisms contributing to the effect and develop the theory which describes it successfully. We show that there is a new mechanism for the anisotropy related to the existence of an additional $B_+k_-^4sigma_+$ effective Zeeman interaction for holes, which is kinematically different from the standard single Zeeman term $B_-k_-^2sigma_+$ considered until now.