Do you want to publish a course? Click here

Spin Selective Purcell Effect in a Quantum Dot Microcavity System

107   0   0.0 ( 0 )
 Added by Zhanghai Chen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the selective coupling of a single quantum dot exciton spin state with the cavity mode in a quantum dot-micropillar cavity system. By tuning an external magnetic field, the Zeeman splitted exciton spin states coupled differently with the cavity due to field manipulated energy detuning. We found a 26 times increase in the emission intensity of spin-up exciton state with respect to spin-down exciton state at resonance due to Purcell effect, which gives rise to the selective enhancement of light emission with the circular polarization degree up to 93%. A four-level rate equation model is developed and quantitatively agrees well with our experimental data. Our results pave the way for the realization of future quantum light sources and the quantum information processing applications.



rate research

Read More

We present a theory for spin selective Aharonov-Bohm oscillations in a lateral triple quantum dot. We show that to understand the Aharonov-Bohm (AB) effect in an interacting electron system within a triple quantum dot molecule (TQD) where the dots lie in a ring configuration requires one to not only consider electron charge but also spin. Using a Hubbard model supported by microscopic calculations we show that, by localizing a single electron spin in one of the dots, the current through the TQD molecule depends not only on the flux but also on the relative orientation of the spin of the incoming and localized electrons. AB oscillations are predicted only for the spin singlet electron complex resulting in a magnetic field tunable spin valve.
Mean-field evolution equations for the exciton and photon populations and polarizations (Bloch-Lamb equations) are written and numerically solved in order to describe the dynamics of electronic states in a quantum dot coupled to the photon field of a microcavity. The equations account for phase space filling effects and Coulomb interactions among carriers, and include also (in a phenomenological way) incoherent pumping of the quantum dot, photon losses through the microcavity mirrors, and electron-hole population decay due to spontaneous emission of the dot. When the dot may support more than one electron-hole pair, asymptotic oscillatory states, with periods between 0.5 and 1.5 ps, are found almost for any values of the system parameters.
A strong, far-detuned laser can shift the energy levels of an optically active quantum system via the AC Stark effect. We demonstrate that the polarization of the laser results in a spin-selective modification to the energy structure of a charged quantum dot, shifting one spin manifold but not the other. An additional shift occurs due to the Overhauser field of the nuclear spins, which are pumped into a partially polarized state. This mechanism offers a potentially rapid, reversible, and coherent control of the energy structure and polarization selection rules of a charged quantum dot.
139 - C.Y.Hu , W.J.Munro , J.L.OBrien 2009
Semiconductor quantum dots (known as artificial atoms) hold great promise for solid-state quantum networks and quantum computers. To realize a quantum network, it is crucial to achieve light-matter entanglement and coherent quantum-state transfer between light and matter. Here we present a robust photon-spin entangling gate with high fidelity and high efficiency (up to 50 percent) using a charged quantum dot in a double-sided microcavity. This gate is based on giant circular birefringence induced by a single electron spin, and functions as an optical circular polariser which allows only one circularly-polarized component of light to be transmitted depending on the electron spin states. We show this gate can be used for single-shot quantum non-demolition measurement of a single electron spin, and can work as an entanglement filter to make a photon-spin entangler, spin entangler and photon entangler as well as a photon-spin quantum interface. This work allows us to make all building blocks for solid-state quantum networks with single photons and quantum-dot spins.
The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits coupled to resonators. Recently there has been renewed interest in studying the quantum strong-coupling (QSC) regime, where states with photon number greater than one are excited. This regime has been recently achieved in semiconductor nanostructures, where a quantum dot is trapped in a planar microcavity. Here we study the quantum strong-coupling regime by calculating its photoluminescence (PL) properties under a pulsed excitation. We discuss the changes in the PL as the QSC regime is reached, which transitions between a peak around the cavity resonance to a doublet. We particularly examine the variations of the PL in the time domain, under regimes of short and long pulse times relative to the microcavity decay time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا