No Arabic abstract
Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are two small classes of X-ray sources strongly suspected to host a magnetar, i.e. an ultra-magnetized neutron star with $Bapprox 10^14-10^15 G. Many SGRs/AXPs are known to be variable, and recently the existence of genuinely transient magnetars was discovered. Here we present a comprehensive study of the pulse profile and spectral evolution of the two transient AXPs (TAXPs) XTE J1810-197 and CXOU J164710.2-455216. Our analysis was carried out in the framework of the twisted magnetosphere model for magnetar emission. Starting from 3D Monte Carlo simulations of the emerging spectrum, we produced a large database of synthetic pulse profiles which was fitted to observed lightcurves in different spectral bands and at different epochs. This allowed us to derive the physical parameters of the model and their evolution with time, together with the geometry of the two sources, i.e. the inclination of the line-of-sight and of the magnetic axis with respect to the rotation axis. We then fitted the (phase-averaged) spectra of the two TAXPs at different epochs using a model similar to that used to calculate the pulse profiles ntzang in XSPEC) freezing all parameters to the values obtained from the timing analysis, and leaving only the normalization free to vary. This provided acceptable fits to XMM-Newton data in all the observations we analyzed. Our results support a picture in which a limited portion of the star surface close to one of the magnetic poles is heated at the outburst onset. The subsequent evolution is driven both by the cooling/varying size of the heated cap and by a progressive untwisting of the magnetosphere.
We report results of X-ray timing analyses for the low-field magnetar CXOU~J164710.2$-$455216 which exhibited multiple outbursts. We use data taken with NICER, NuSTAR, Chandra, and Neil-Gehrels-Swift telescopes between 2017 and 2018 when the source was in an active state. We perform semi-phase-coherent timing analyses to measure the spin parameters and a spin-inferred magnetic-field strength ($B_s$) of the magnetar. Using a semi-phase-coherent method, we infer the magnetic field strengths to be $3-4times 10^{13}rm G$ at the observation period ($sim$MJD 58000), and by comparing with previous frequency measurements (MJD 54000) a long-term average value of $B_s$ is estimated to be $approx4times 10^{13}rm G$. So this analysis may add CXOU~J164710.2$-$455216 to the ranks of low-field magnetars. The inferred characteristic age ($tau_c$) is 1--2 Myr which is smaller than the age of Westerlund~1, so the magnetars association with the star cluster is still secure. For the low dipole field and the large age, recent multiple outbursts observed from the source are hard to explain unless it has strong magnetic multipole components. We also find timing anomalies around outburst epochs, which suggests that there may be spin-down torque applied to the magnetar near the epochs as was proposed in magnetar models.
Suzaku TOO observation of the anomalous X-ray pulsar CXOU J164710.2-455216 was performed on 2006 September 23--24 for a net exposure of 38.8 ks. During the observation, the XIS was operated in 1/8 window option to achieve a time resolution of 1 s. Pulsations are clearly detected in the XIS light curves with a barycenter corrected pulse period of 10.61063(2) s. The XIS pulse profile shows 3 peaks of different amplitudes with RMS fractional amplitude of ~11% in 0.2--6.0 keV energy band. Though the source was observed with the HXD of Suzaku, the data is highly contaminated by the nearby bright X-ray source GX 340+0 which was in the HXD field of view. The 1-10 keV XIS spectra are well fitted by two blackbody components. The temperatures of two blackbody components are found to be 0.61+/-0.01 keV and 1.22+/-0.06 keV and the value of the absorption column density is 1.73+/-0.03 x 10^{22} atoms cm^{-2}. The observed source flux in 1-10 keV energy range is calculated to be 2.6 x 10^{-11} ergs cm^{-2} s^{-1} with significant contribution from the soft blackbody component (kT = 0.61 keV). Pulse phase resolved spectroscopy of XIS data shows that the flux of the soft blackbody component consists of three narrow peaks, whereas the flux of the other component shows a single peak over the pulse period of the AXP. The blackbody radii changes between 2.2-2.7 km and 0.28-0.38 km (assuming the source distance to be 5 kpc) over pulse phases for the soft and hard components, respectively. The details of the results obtained from the timing and spectral analysis is presented.
We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative f-dot, decreased in an unsteady manner by a factor of 3 in the first year of radio monitoring. In contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained steady in the next 22 months, at an average of 0.7+/-0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier behavior. There was no secular decrease that presaged its radio demise. During this time the pulse profile continued to display large variations, and polarimetry indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in f-dot by at least a factor of 8. But since 2007, its f-dot has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shut-down is a decrease of ~20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the radio demise, implies continuing magnetar activity.
We report on data obtained with the Chandra, XMM-Newton, Suzaku and Swift X-ray observatories, following the 2006 outburst of the Anomalous X-ray Pulsar CXO J164710.2-455216. We find no evidence for the very large glitch and rapid exponential decay as was reported previously for this source. We set a 3 sigma upper limit on any fractional frequency increase at the time of the outburst of Delta nu/nu < 1.5 x 10^{-5}. Our timing analysis, based on the longest time baseline yet, yields a spin-down rate for the pulsar that implies a surface dipolar magnetic field of ~9 x 10^{13} G, although this could be biased high by possible recovery from an undetected glitch. We also present an analysis of the source flux and spectral evolution, and find no evidence for long-term spectral relaxation post-outburst as was previously reported.
We present the earliest X-ray observations of the 2018 outburst of XTE J1810-197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810-197 immediately after a November 20-26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NUSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74+/-0.02 keV and photon index Gamma = 4.4+/-0.2 or by a two-blackbody model with kT = 0.59+/-0.04 keV and kT = 1.0+/-0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Gamma_h = -0.2+/-1.5 and Gamma_h = 1.5+/-0.5, respectively. The latter index is consistent with hard X-ray flux reported for the non-transient magnetars. In the 2-10 keV bandpass, the absorbed flux is 2E-10 erg/s/cm^2, a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by approx. 0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely co-aligned.