Do you want to publish a course? Click here

Optimal control of a big financial company with debt liability under bankrupt probability constraints

188   0   0.0 ( 0 )
 Added by Zongxia Liang
 Publication date 2010
  fields Financial
and research's language is English




Ask ChatGPT about the research

This paper considers an optimal control of a big financial company with debt liability under bankrupt probability constraints. The company, which faces constant liability payments and has choices to choose various production/business policies from an available set of control policies with different expected profits and risks, controls the business policy and dividend payout process to maximize the expected present value of the dividends until the time of bankruptcy. However, if the dividend payout barrier is too low to be acceptable, it may result in the companys bankruptcy soon. In order to protect the shareholders profits, the managements of the company impose a reasonable and normal constraint on their dividend strategy, that is, the bankrupt probability associated with the optimal dividend payout barrier should be smaller than a given risk level within a fixed time horizon. This paper aims at working out the optimal control policy as well as optimal return function for the company under bankrupt probability constraint by stochastic analysis, PDE methods and variational inequality approach. Moreover, we establish a risk-based capital standard to ensure the capital requirement of can cover the total given risk by numerical analysis and give reasonable economic interpretation for the results.



rate research

Read More

This paper considers optimal control problem of a large insurance company under a fixed insolvency probability. The company controls proportional reinsurance rate, dividend pay-outs and investing process to maximize the expected present value of the dividend pay-outs until the time of bankruptcy. This paper aims at describing the optimal return function as well as the optimal policy. As a by-product, the paper theoretically sets a risk-based capital standard to ensure the capital requirement of can cover the total risk.
We consider an optimal control problem of a property insurance company with proportional reinsurance strategy. The insurance business brings in catastrophe risk, such as earthquake and flood. The catastrophe risk could be partly reduced by reinsurance. The management of the company controls the reinsurance rate and dividend payments process to maximize the expected present value of the dividends before bankruptcy. This is the first time to consider the catastrophe risk in property insurance model, which is more realistic. We establish the solution of the problem by the mixed singular-regular control of jump diffusions. We first derive the optimal retention ratio, the optimal dividend payments level, the optimal return function and the optimal control strategy of the property insurance company, then the impacts of the catastrophe risk and key model parameters on the optimal return function and the optimal control strategy of the company are discussed.
218 - Zongxia Liang , Jicheng Yao 2010
Based on a point of view that solvency and security are first, this paper considers regular-singular stochastic optimal control problem of a large insurance company facing positive transaction cost asked by reinsurer under solvency constraint. The company controls proportional reinsurance and dividend pay-out policy to maximize the expected present value of the dividend pay-outs until the time of bankruptcy. The paper aims at deriving the optimal retention ratio, dividend payout level, explicit value function of the insurance company via stochastic analysis and PDE methods. The results present the best equilibrium point between maximization of dividend pay-outs and minimization of risks. The paper also gets a risk-based capital standard to ensure the capital requirement of can cover the total given risk. We present numerical results to make analysis how the model parameters, such as, volatility, premium rate, and risk level, impact on risk-based capital standard, optimal retention ratio, optimal dividend payout level and the companys profit.
288 - Zongxia Liang , Jicheng Yao 2010
This paper considers nonlinear regular-singular stochastic optimal control of large insurance company. The company controls the reinsurance rate and dividend payout process to maximize the expected present value of the dividend pay-outs until the time of bankruptcy. However, if the optimal dividend barrier is too low to be acceptable, it will make the company result in bankruptcy soon. Moreover, although risk and return should be highly correlated, over-risking is not a good recipe for high return, the supervisors of the company have to impose their preferred risk level and additional charge on firm seeking services beyond or lower than the preferred risk level. These indeed are nonlinear regular-singular stochastic optimal problems under ruin probability constraints. This paper aims at solving this kind of the optimal problems, that is, deriving the optimal retention ratio,dividend payout level, optimal return function and optimal control strategy of the insurance company. As a by-product, the paper also sets a risk-based capital standard to ensure the capital requirement of can cover the total given risk, and the effect of the risk level on optimal retention ratio, dividend payout level and optimal control strategy are also presented.
262 - Zhuo Jin , George Yin , 2011
This paper develops numerical methods for finding optimal dividend pay-out and reinsurance policies. A generalized singular control formulation of surplus and discounted payoff function are introduced, where the surplus is modeled by a regime-switching process subject to both regular and singular controls. To approximate the value function and optimal controls, Markov chain approximation techniques are used to construct a discrete-time controlled Markov chain with two components. The proofs of the convergence of the approximation sequence to the surplus process and the value function are given. Examples of proportional and excess-of-loss reinsurance are presented to illustrate the applicability of the numerical methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا