No Arabic abstract
Several years ago, two of the present authors proposed the concept of the border of spacetime as a generalization of spacetime singularities. Visible borders of spacetime, which replace naked singularities of classical theory, are not only necessary for the mathematical completeness of general relativity but they also provide a window into new physics of strongly curved spacetime, which is observable in principle. By employing simple geometrical and dimensional arguments, we show that not only black holes but also visible borders of spacetime will be generated at, for example, the CERN Large Hadron Collider, provided that the energy scale of quantum gravity is near 1 TeV in the framework of the large extra-dimension scenario.
We investigate the late-time tail of the retarded Green function for the dynamics of a linear field perturbation of Kerr spacetime. We develop an analytical formalism for obtaining the late-time tail up to arbitrary order for general integer spin of the field. We then apply this formalism to obtain the details of the first five orders in the late-time tail of the Green function for the case of a scalar field: to leading order we recover the known power law tail $t^{-2ell-3}$, and at third order we obtain a logarithmic correction, $t^{-2ell-5}ln t$, where $ell$ is the field multipole.
We obtain the geodesics for the simplest possible stealth defect which has a flat spacetime. We, then, discuss the lensing properties of such a defect, and the corresponding image formation. Similar lensing properties can be expected to hold for curved-spacetime stealth defects.
This work is essentially a review of a new spacetime model with closed causal curves, recently presented in another paper (Class. Quantum Grav. textbf{35}(16) (2018), 165003). The spacetime at issue is topologically trivial, free of curvature singularities, and even time and space orientable. Besides summarizing previous results on causal geodesics, tidal accelerations and violations of the energy conditions, here redshift/blueshift effects and the Hawking-Ellis classification of the stress-energy tensor are examined.
Production of scalar particles by a relativistic, semi-transparent mirror in 1+3D Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The corresponding Bogoliubov coefficients are derived for a mirror with arbitrary trajectory. In particular, we apply our derived formula to the gravitational collapse trajectory. In addition, we identify the relation between the particle spectrum and the particle production probability, and we demonstrate the equivalence between our approach and the existing approach in the literature, which is restricted to 1+1D. In short, our treatment extends the study to 1+3D spacetime. Lastly, we offer a third approach for finding the particle spectrum using the S-matrix formalism.
We consider a model involving a self-interacting complex scalar field minimally coupled to gravity and emphasize the cylindrically symmetric classical solutions. A general ansatz is performed which transforms the field equations into a system of differential equations. In the generic case, the scalar field depends on the four space-time coordinates. The underlying Einstein vacuum equations are worth studying by themselve and lead to numerous analytic results extending the Kasner solutions. The solutions of the coupled system are -static as well as stationnary- gravitating Q-tubes of scalar matter which deform space-time.