Do you want to publish a course? Click here

C, N and O abundances in red clump stars of the Milky Way

173   0   0.0 ( 0 )
 Added by Eduardas Puzeras
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hipparcos orbiting observatory has revealed a large number of helium-core-burning clump stars in the Galactic field. These low-mass stars exhibit signatures of extra-mixing processes that require modeling beyond the first dredge-up of standard models. The 12C/13C ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters. In this work we present 12C/13C determinations in a sample of 34 Galactic clump stars as well as abundances of nitrogen, carbon and oxygen. Abundances of carbon were studied using the C2 Swan (0,1) band head at 5635.5 A. The wavelength interval 7980-8130 A with strong CN features was analysed in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O I] line at 6300 A. Compared with the Sun and dwarf stars of the Galactic disk, mean abundances in the investigated clump stars suggest that carbon is depleted by about 0.2 dex, nitrogen is enhanced by 0.2 dex and oxygen is close to abundances in dwarfs. Comparisons to evolutionary models show that the stars fall into two groups: the one is of first ascent giants with carbon isotope ratios altered according to the first dredge-up prediction, and the other one is of helium-core-burning stars with carbon isotope ratios altered by extra mixing. The stars investigated fall to these groups in approximately equal numbers.



rate research

Read More

Large pristine samples of red clump stars are highly sought after given that they are standard candles and give precise distances even at large distances. However, it is difficult to cleanly select red clumps stars because they can have the same T$_{mathrm{eff}}$ and log $g$ as red giant branch stars. Recently, it was shown that the asteroseismic parameters, $rm{Delta}$P and $rm{Delta u}$, which are used to accurately select red clump stars, can be derived from spectra using the change in the surface carbon to nitrogen ratio ([C/N]) caused by mixing during the red giant branch. This change in [C/N] can also impact the spectral energy distribution. In this study, we predict the $rm{Delta}$P, $rm{Delta u}$, T$_{mathrm{eff}}$ and log $g$ using 2MASS, AllWISE, gaia, and Pan-STARRS data in order to select a clean sample of red clump stars. We achieve a contamination rate of $sim$20%, equivalent to what is achieved when selecting from T$_{mathrm{eff}}$ and log $g$ derived from low resolution spectra. Finally, we present two red clump samples. One sample has a contamination rate of $sim$ 20% and $sim$ 405,000 red clump stars. The other has a contamination of $sim$ 33% and $sim$ 2.6 million red clump stars which includes $sim$ 75,000 stars at distances $>$ 10 kpc. For |b|>30 degrees we find $sim$ 15,000 stars with contamination rate of $sim$ 9%. The scientific potential of this catalog for studying the structure and formation history of the Galaxy is vast given that it includes millions of precise distances to stars in the inner bulge and distant halo where astrometric distances are imprecise.
107 - David M. Nataf 2016
I review the literature covering the issue of interstellar extinction toward the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor $sim 100 times$ in the past twenty years, and the total-to-selective extinction ratios reported have shifted by $sim$20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and standard literature values.
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 $M_{odot}$). These observations are compared with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. In six clusters, we find about 35% RC stars with Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation was for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that the possible Li production is ubiquitous. For about 65% RC giants we can only determine abundance upper limits that could be hiding very low Li abundances. Our results indicate a possible production of Li during the RC, at levels that would not classify the stars as Li rich. Determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models with an additional mixing episode close to the He flash.
261 - Shu Wang , Xiaodian Chen 2021
Red clump stars (RCs) are useful tracers of distances, extinction, chemical abundances, and Galactic structures and kinematics. Accurate estimation of the RC parameters -- absolute magnitude and intrinsic color -- is the basis for obtaining high-precision RC distances. By combining astrometric data from Gaia, spectroscopic data from APOGEE and LAMOST, and multi-band photometric data from Gaia, APASS, Pan-STARRS1, 2MASS, and WISE surveys, we use the Gaussian process regression to train machine learners to derive the multi-band absolute magnitudes $M_lambda$ and intrinsic colors $(lambda_1-lambda_2)_0$ for each spectral RC. The dependence of $M_lambda$ on metallicity decreases from optical to infrared bands, while the dependence of $M_lambda$ on age is relatively similar in each band. $(lambda_1-lambda_2)_0$ are more affected by metallicity than age. The RC parameters are not suitable to be represented by simple constants but are related to the Galactic stellar population structure. By analyzing the variation of $M_lambda$ and $(lambda_1-lambda_2)_0$ in the spatial distribution, we construct $(R, z)$ dependent maps of mean absolute magnitudes and mean intrinsic colors of the Galactic RCs. Through external and internal validation, we find that using three-dimensional (3D) parameter maps to determine RC parameters avoids systematic bias and reduces dispersion by about 20% compared to using constant parameters. Based on Gaias EDR3 parallax, our 3D parameter maps, and extinction-distance profile selection, we obtain a photometric RC sample containing 11 million stars with distance and extinction measurements.
We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of proper motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72$+$015549.6 at $274 pm 74$ kpc and ULAS J074417.48$+$253233.0 at 238 $pm$ 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0 are both moving away from the Galactic center at $52 pm 10$ km s$^{-1}$ and $24 pm 10$ km s$^{-1}$, respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MWs disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxys outer halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا