Do you want to publish a course? Click here

First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties

126   0   0.0 ( 0 )
 Added by Dallas Trinkle
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid-solution strengthening results from solutes impeding the glide of dislocations. Existing theories of strength rely on solute-dislocation interactions, but do not consider dislocation core structures, which need an accurate treatment of chemical bonding. Here, we focus on strengthening of Mg, the lightest of all structural metals and a promising replacement for heavier steel and aluminum alloys. Elasticity theory, which is commonly used to predict the requisite solute-dislocation interaction energetics, is replaced with quantum-mechanical first-principles calculations to construct a predictive mesoscale model for solute strengthening of Mg. Results for 29 different solutes are displayed in a strengthening design map as a function of solute misfits that quantify volumetric strain and slip effects. Our strengthening model is validated with available experimental data for several solutes, including Al and Zn, the two most common solutes in Mg. These new results highlight the ability of quantum-mechanical first-principles calculations to predict complex material properties such as strength.



rate research

Read More

187 - Joseph A. Yasi 2011
We develop a first-principles model of thermally-activated cross-slip in magnesium in the presence of a random solute distribution. Electronic structure methods provide data for the interaction of solutes with prismatic dislocation cores and basal dislocation cores. Direct calculations of interaction energies are possible for solutes---K, Na, and Sc---that lower the Mg prismatic stacking fault energy to improve formability. To connect to thermally activated cross-slip, we build a statistical model for the distribution of activation energies for double kink nucleation, barriers for kink migration, and roughness of the energy landscape to be overcome by an athermal stress. These distributions are calculated numerically for a range of concentrations, as well as alternate approximate analytic expressions for the dilute limit. The analytic distributions provide a simplified model for the maximum cross-slip softening for a solute as a function of temperature. The direct interaction calculations predict lowered forming temperatures for Mg-0.7at.%Sc, Mg-0.4at.%K, and Mg-0.6at.%Na of approximately 250C.
The electronic band structure and elastic properties of the Cd${}_{16}$Se${}_{15}$Te solid state solution in the framework of the density functional theory calculations are investigated. The structure of the sample is constructed on the original binary compound CdSe, which crystallizes in the cubic phase. Based on the electronic band structure, the effective mass of electron, heavy hole, light hole, spin-orbit effective masses and reduced mass in G point are calculated. In addition, the exciton binding energy, refractive index and high-frequency dielectric constant are calculated. The Young modulus, shear modulus, bulk modulus and Poisson ratio are calculated theoretically. Based on the results of elastic coefficients, the value of acoustic velocity and Debye temperature is obtained.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.
In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc solid solution phase are generated at different compositions, $x_A=x_B=x_C=tfrac{1}{3}$ and $x_A=tfrac{1}{2}$, $x_B=x_C=tfrac{1}{4}$, whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا