Do you want to publish a course? Click here

Complex dynamics in hard oscillators: the influence of constant inputs

176   0   0.0 ( 0 )
 Added by Linda Ponta
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Systems with the coexistence of different stable attractors are widely exploited in systems biology in order to suitably model the differentiating processes arising in living cells. In order to describe genetic regulatory networks several deterministic models based on systems of nonlinear ordinary differential equations have been proposed. Few studies have been developed to characterize how either an external input or the coupling can drive systems with different coexisting states. For the sake of simplicity, in this manuscript we focus on systems belonging to the class of radial isochron clocks that exhibits hard excitation, in order to investigate their complex dynamics, local and global bifurcations arising in presence of constant external inputs. In particular the occurrence of saddle node on limit cycle bifurcations is detected.



rate research

Read More

Threshold values in population dynamics can be formulated as spectral bounds of matrices, determining the dichotomy of population persistence and extinction. For a square matrix $mu A + Q$, where $A$ is a quasi-positive matrix describing population dispersal among patches in a heterogeneous environment and $Q$ is a diagonal matrix encoding within-patch population dynamics, the monotonicy of its spectral bound with respect to dispersal speed/coupling strength/travel frequency $mu$ is established via two methods. The first method is an analytic derivation utilizing a graph-theoretic approach based on Kirchhoffs Matrix-Tree Theorem; the second method employs Collatz-Wielandt formula from matrix theory and complex analysis arguments. It turns out that our established result is a slightly strengthen version of Karlin-Altenbergs Theorem, which has previously been discovered independently while investigating reduction principle in evolution biology and evolution dispersal in patchy landscapes. Nevertheless, our result provides a new and effective approach in stability analysis of complex biological systems in a heterogeneous environment. We illustrate this by applying our result to well-known ecological models of single species, predator-prey and competition, and an epidemiological model of susceptible-infected-susceptible (SIS) type. We successfully solve some open problems in the literature of population dynamics.
The gradient flow structure of the model introduced in [CG99] for the dynamics of screw dislocations is investigated by means of a generalised minimising-movements scheme approach. The assumption of a finite number of available glide directions, together with the maximal dissipation criterion that governs the equations of motion, results into solving a differential inclusion rather than an ODE. This paper addresses how the model in [CG99] is connected to a time-discrete evolution scheme which explicitly confines dislocations to move each time step along a single glide direction. It is proved that the time-continuous model in [CG99] is the limit of these time-discrete minimising-movement schemes when the time step converges to 0. The study presented here is a first step towards a generalisation of the setting in [AGS08, Chap. 2 and 3] that allows for dissipations which cannot be described by a metric.
We investigate the large time behavior of $N$ particles restricted to a smooth closed curve in $mathbb{R}^d$ and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz $s$-energy with $s>1.$ We show that regardless of their initial positions, for all $N$ and time $t$ large, their normalized Riesz $s$-energy will be close to the $N$-point minimal possible. Furthermore, the distribution of such particles will be close to uniform with respect to arclength measure along the curve.
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). The idea is based on a turn-by-turn transfer of the excitation from one subsystem to another (S.P.~Kuznetsov, Phys.~Rev.~Lett. bf 95 rm, 2005, 144101) accompanied with appropriate nonlinear transformation of the complex amplitude of the oscillations in the course of the process. Analytic and numerical studies are performed. Special attention is paid to an analysis of the violation of the applicability of the slow amplitude method with the decrease in the ratio of the period of the excitation transfer to the basic period of the oscillations. The main effect is the rotation of the Mandelbrot-like set in the complex parameter plane; one more effect is the destruction of subtle small-scale fractal structure of the set due to the presence of non-analytic terms in the complex amplitude equations.
We consider networks of dynamical units that evolve in time according to different laws, and are coupled to each other in highly irregular ways. Studying how to steer the dynamics of such systems towards a desired evolution is of great practical interest in many areas of science, as well as providing insight into the interplay between network structure and dynamical behavior. We propose a pinning protocol for imposing specific dynamic evolutions compatible with the equations of motion on a networked system. The method does not impose any restrictions on the local dynamics, which may vary from node to node, nor on the interactions between nodes, which may adopt in principle any nonlinear mathematical form and be represented by weighted, directed or undirected, links. We first explore our method on small synthetic networks of chaotic oscillators, which allows us to unveil a correlation between the ordered sequence of pinned nodes and their topological influence in the network. We then consider a 12-species trophic web network, which is a model of a mammalian food web. By pinning a relatively small number of species, one can make the system abandon its spontaneous evolution from its (typically uncontrolled) initial state towards a target dynamics, or periodically control it so as to make the populations evolve within stipulated bounds. The relevance of these findings for environment management and conservation is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا