Do you want to publish a course? Click here

Probing the Low Mass X-ray Binaries/Globular Cluster connection in NGC1399

157   0   0.0 ( 0 )
 Added by Maurizio Paolillo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a wide field study of the Globular Clusters/Low Mass X-ray Binaries connection in the cD elliptical NGC1399, combining HST/ACS and Chandra high resolution data. We find evidence that LMXB formation likelihood is influenced by GCs structural parameters, in addition to the well known effects of mass and metallicity, independently from galactocentric distance.



rate research

Read More

We report significant inhomogeneities in the projected two-dimensional (2D) spatial distributions of Low-Mass X-ray Binaries (LMXBs) and Globular Clusters (GCs) of the intermediate mass elliptical galaxy NGC4278. In the inner region of NGC4278, a significant arc-like excess of LMXBs extending south of the center at ~50 in the western side of the galaxy can be associated to a similar over-density of the spatial distribution of red GCs from~Brassington et al. (2009). Using a recent catalog of GCs produced by Usher et al.(2013) and covering the whole field of the NGC4278 galaxy, we have discovered two other significant density structures outside the D25 isophote to the W and E of the center of NGC4278, associated to an over-density and an under-density respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC4649 and NGC4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.
This paper presents the analysis of candidate quiescent low mass xray binarie (qLMXBs) observed during a short Chandra/ACIS observation of the globular cluster (GC) NGC 6304. Two out of the three candidate qLMXBs of this cluster, XMMU 171433-292747 and XMMU 171421-292917, lie within the field of view. This permits comparison with the discovery observation of these sources. The one in the GC core -- XMMU 171433-292747 -- is spatially resolved into two separate X-ray sources, one of which is consistent with a pure H-atmosphere qLMXB, and the other is an X-ray power-law spectrum source. These two spectral components separately account for those observed from XMMU 171433-292747 in its discovery observation. We find that the observed flux and spectral parameters of the H-atmosphere spectral components are consistent with the previous observation, as expected from a qLMXB powered by deep crustal heating. XMMU 171421-292917 also has neutron star atmosphere spectral parameters consistent with those in the XMM-Newton observation and the observed flux has decreased by a factor 0.54^{+0.30}_{-0.24}.
119 - Neven Vulic 2017
Galactic and extragalactic studies have shown that metal-rich globular clusters (GCs) are approximately three times more likely to host bright low-mass X-ray binaries (LMXBs) than metal-poor GCs. There is no satisfactory explanation for this metallicity effect. We tested the hypothesis that the number density of red giant branch (RGB) stars is larger in metal-rich GCs, and thus potentially the cause of the metallicity effect. Using Hubble Space Telescope photometry for 109 unique Milky Way GCs, we investigated whether RGB star density was correlated with GC metallicity. Isochrone fitting was used to calculate the number of RGB stars, which were normalized by the GC mass and fraction of observed GC luminosity, and determined density using the volume at the half-light radius $r_{h}$. The RGB star number density was weakly correlated with metallicity [Fe/H], giving Spearman and Kendall Rank test $p$-values of 0.00016 and 0.00021 and coefficients $r_{s} = 0.35$ and $tau = 0.24$ respectively. This correlation may be biased by a possible dependence of $r_{h}$ on [Fe/H], although studies have shown that $r_{h}$ is correlated with Galactocentric distance and independent of [Fe/H]. The dynamical origin of the $r_{h}$-metallicity correlation (tidal stripping) suggests that metal-rich GCs may have had more active dynamical histories, which would promote LMXB formation. No correlation between the RGB star number density and metallicity was found when using only the GCs that hosted quiescent LMXBs. A complete census of quiescent LMXBs in our Galaxy is needed to further probe the metallicity effect, which will be possible with the upcoming launch of eROSITA.
We report significant anisotropies in the projected two-dimensional (2D) spatial distributions of Globular Clusters (GCs) of the giant Virgo elliptical galaxy NGC4649 (M60). Similar features are found in the 2D distribution of low-mass X-ray binaries (LMXBs), both associated with GCs and in the stellar field. Deviations from azimuthal symmetry suggest an arc-like excess of GCs extending north at 4-15 kpc galactocentric radii in the eastern side of major axis of NGC4649. This feature is more prominent for red GCs, but still persists in the 2D distribution of blue GCs. High and low luminosity GCs also show some segregation along this arc, with high-luminosity GCs preferentially located in the southern end and low-luminosity GCs in the northern section of the arc. GC-LMXBs follow the anisotropy of red-GCs, where most of them reside; however, a significant overdensity of (high-luminosity) field LMXBs is present to the south of the GC arc. These results suggest that NGC4649 has experienced mergers and/or multiple accretions of less massive satellite galaxies during its evolution, of which the GCs in the arc may be the fossil remnant. We speculate that the observed anisotropy in the field LMXB spatial distribution indicates that these X-ray binaries may be the remnants of a star formation event connected with the merger, or maybe be ejected from the parent red GCs, if the bulk motion of these clusters is significantly affected by dynamical friction. We also detect a luminosity enhancement in the X-ray source population of the companion spiral galaxy NGC4647. We suggest that these may be younger high mass X-ray binaries formed as a result of the tidal interaction of this galaxy with NGC4649.
We present a recent Chandra observation of the quiescent low-mass X-ray binary containing a neutron star, located in the globular cluster M30. We fit the thermal emission from the neutron star to extract its mass and radius. We find no evidence of flux variability between the two observations taken in 2001 and 2017, nor between individual 2017 observations, so we analyse them together to increase the signal to noise. We perform simultaneous spectral fits using standard light-element composition atmosphere models (hydrogen or helium), including absorption by the interstellar medium, correction for pile-up of X-ray photons on the detector, and a power-law for count excesses at high photon energy. Using a Markov-chain Monte Carlo approach, we extract mass and radius credible intervals for both chemical compositions of the atmosphere: $R_{textrm{NS}}=7.94^{+0.76}_{-1.21}$ km and $M_{textrm{NS}}<1.19$ M$_{odot}$ assuming pure hydrogen, and $R_{textrm{NS}}=10.50^{+2.88}_{-2.03}$ km and $M_{textrm{NS}}<1.78$ M$_{odot}$ for helium, where the uncertainties represent the 90% credible regions. For H, the small radius is difficult to reconcile with most current nuclear physics models (especially for nucleonic equations of state) and with other measurements of neutron star radii, with recent preferred values generally in the 11-14 km range. Whereas for He, the measured radius is consistent with this range. We discuss possible sources of systematic uncertainty that may result in an underestimation of the radius, identifying the presence of surface temperature inhomogeneities as the most relevant bias. According to this, we conclude that either the atmosphere is composed of He, or it is a H atmosphere with a significant contribution of hot spots to the observed radiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا