Do you want to publish a course? Click here

Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider

130   0   0.0 ( 0 )
 Added by Erez Etzion
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.



rate research

Read More

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (<50-mm RMS) and low cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.
141 - Alexis Mulski 2017
Plasma panel detectors are a variant of micropattern detectors that are sensitive to ionizing radiation. They are motivated by the design and operation of plasma display panels. The detectors consist of arrays of electrically and optically isolated pixels defined by metallized cavities embedded in a dielectric substrate. These are hermetically sealed gaseous detectors that use exclusively non-hydrocarbon gas mixtures. The newest variant of these closed-architecture detectors is known as the Microhexcavity plasma panel detector ($mu$Hex) consisting of 2 mm wide, regular close-packed hexagonal pixels each with a circular thick-film anode. The fabrication, staging, and operation of these detectors is described. Initial tests with the $mu$Hex detectors operated in Geiger mode yield Volt-level signals in the presence of ionizing radiation. The spontaneous discharge rate in the absence of a source is roughly 3-4 orders of magnitude lower compared to the rates measured using low energy betas.
119 - Robert Ball 2010
Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, is intended to be a fast, high resolution detector comprised of an array of plasma discharge cells operating in a hermetically sealed gas mixture. We report on the PPS development effort, including recent laboratory measurements.
The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide efficient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge effects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial resolution of a chamber of 50 ?microns up to the highest rates. We report about the design, construction and test of prototype detectors which fulfill these requirements.
MAGIX is a planned experiment that will be implemented at the upcoming accelerator MESA in Mainz. Due to its location in the energy-recovering lane of the accelerator beam-currents up to 1mA with a maximum energy of 105 MeV will be available for precision experiments. MAGIX itself consists of a jet-target and two magnetic spectrometers. Inside the spectrometers GEM-based detectors will be used in the focal plane for track reconstruction. The design goals for the detector modules are a spatial resolution of 50 um, a size of 1.20 m x 0.3 m and a minimal material budget. To accomplish these goals we started developing several GEM-prototypes to study different behaviors and techniques to optimize the final detector design. The GEM foils used are provided by CERN and are trained, stretched and framed in our laboratory. The readout is done with an SRS based system. In this contribution the requirements, achievements and the ongoing developments are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا