Do you want to publish a course? Click here

On the dust geometry in radio-loud active galactic nuclei

224   0   0.0 ( 0 )
 Added by Hermine Landt
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use photometric and spectroscopic infrared observations obtained with the Spitzer Space Telescope of 12 radio-loud active galactic nuclei (AGN) to investigate the dust geometry. Our approach is to look at the change of the infrared spectral energy distribution (SED) and the strength of the 10 micron silicate feature with jet viewing angle. We find that (i) a combination of three or four blackbodies fits well the infrared SED; (ii) the sources viewed closer to the jet axis appear to have stronger warm (~300 - 800 K) and cold (~150 - 250 K) dust emissions relative to the hot component; and (iii) the silicate features are always in emission and strongly redshifted. We test clumpy torus models and find that (i) they approximate well the mid-infrared part of the SED, but significantly underpredict the fluxes at both near- and far-infrared wavelengths; (ii) they can constrain the dust composition (in our case to that of the standard interstellar medium); (iii) they require relatively large (~10%-20% the speed of light) redward displacements; and (iv) they give robust total mass estimates, but are insensitive to the assumed geometry.



rate research

Read More

132 - F. Tombesi 2014
Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultra-fast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud AGNs observed with XMM-Newton and Suzaku. The sample is drawn from the Swift BAT 58-month catalog and blazars are excluded. X-ray bright FR II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27% of the sources. However, correcting for the number of spectra with insufficient signal-to-noise, we can estimate that the incidence of UFOs is this sample of radio-loud AGNs is likely in the range f=(50+/-20)%. A photo-ionization modeling of the absorption lines with XSTAR allows to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between v_out<1,000 km s^-1 and v_out~0.4c, with mean and median values of v_out~0.133c and v_out~0.117c, respectively. The material is highly ionized, with an average ionization parameter of logxi~4.5 erg s^-1 cm, and the column densities are larger than N_H > 10^22 cm^-2. Overall, these characteristics are consistent with the presence of complex accretion disk winds in a significant fraction of radio-loud AGNs and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
We present an update of the parsec scale properties of the Bologna Complete Sample consisting of 95 radio sources from the B2 Catalog of Radio Sources and the Third Cambridge Revised Catalog (3CR), with z < 0.1. Thanks to recent new data we have now parsec scale images for 76 sources of the sample. Most of them show a one-sided jet structure but we find a higher fraction of two-sided sources in comparison with previous flux-limited VLBI surveys. A few peculiar sources are presented and discussed in more detail.
225 - G. Orosz , S. Frey 2013
Context. It will soon become possible to directly link the most accurate radio reference frame with the Gaia optical reference frame using many common extragalactic objects. It is important to know the level of coincidence between the radio and optical positions of compact active galactic nuclei (AGN). Aims. Using the best catalogues available at present, we investigate how many AGN with significantly large optical-radio positional offsets exist as well as the possible causes of these offsets. Methods. We performed a case study by finding optical counterparts to the International Celestial Reference Frame (ICRF2) radio sources in the Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9). The ICRF2 catalogue was used as a reference because the radio positions determined by Very Long Baseline Interferometry (VLBI) observations are about two orders of magnitude more accurate than the optical positions. Results. We find 1297 objects in common for ICRF2 and SDSS DR9. Statistical analysis of the optical-radio differences verifies that the SDSS DR9 positions are accurate to ~55 mas in both coordinates, with no systematic offset with respect to ICRF2. We find 51 sources (~4% of the sample) for which the positional offset exceeds 170 mas (~3{sigma}). Astrophysical explanations must exist for most of these outliers. There are 3 known strong gravitational lenses among them. Dual AGN or recoiling supermassive black holes may also be possible. Conclusions. The most accurate Gaia-VLBI reference frame link will require a careful selection of a common set of objects by eliminating the outliers. On the other hand, the significant optical-radio positional non-coincidences may offer a new tool for finding e.g. gravitational lenses or dual AGN candidates. Detailed follow-up radio interferometric and optical spectroscopic observations are encouraged to investigate the outlier sources found in this study.
This whitepaper describes how the VLASS could be designed in a manner to allow the identification of candidate dual active galactic nuclei (AGN) at separations <7 kpc. Dual AGN represent a clear marker of two supermassive black holes within an ongoing merger. A dual AGN survey will provide a wealth of studies in structure growth and gravitational-wave science. Radio wavelengths are ideal for identifying close pairs, as disturbed stellar and gaseous material can obscure their presence in optical and shorter wavelengths. With sufficiently high resolution and sensitivity, a large-scale radio imaging survey like the VLASS will uncover many of these systems and provide the means to broadly study the radio properties of candidate dual systems revealed at other wavelengths. We determine that the ideal survey for our purposes will be at as high a resolution as possible, with significantly more science return in A array at L-band or higher, or B array at C-band or higher. We describe a range of potential survey parameters within this document. Based on the analysis outlined in this whitepaper, our ideal survey would create a catalogue of $gtrsim$100 dual AGN in either: 1) a medium-sensitivity (~1 mJy detection threshold), wide-field (few thousand square degree) survey, or 2) a high-sensitivity (~10 uJy threshold) survey of several hundred square degrees.
282 - Moshe Elitzur 2012
The inevitable spread in properties of the toroidal obscuration of active galactic nuclei (AGNs) invalidates the widespread notion that type 1 and 2 AGNs are intrinsically the same objects, drawn randomly from the distribution of torus covering factors. Instead, AGNs are drawn emph{preferentially} from this distribution; type 2 are more likely drawn from the distribution higher end, type 1 from its lower end. Type 2 AGNs have a higher IR luminosity, lower narrow-line luminosity and a higher fraction of Compton thick X-ray obscuration than type 1. Meaningful studies of unification statistics cannot be conducted without first determining the intrinsic distribution function of torus covering factors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا