Do you want to publish a course? Click here

Simplicial approximation and complexity growth

200   0   0.0 ( 0 )
 Added by Daniel Pons
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

This work is motivated by two problems: 1) The approach of manifolds and spaces by triangulations. 2) The complexity growth in sequences of polyhedra. Considering both problems as related, new criteria and methods for approximating smooth manifolds are deduced. When the sequences of polyhedra are obtained by the action of a discrete group or semigroup, further control is given by geometric, topologic and complexity observables. We give a set of relevant examples to illustrate the results, both in infinite and finite dimensions.



rate research

Read More

In the spirit of topological entropy we introduce new complexity functions for general dynamical systems (namely groups and semigroups acting on closed manifolds) but with an emphasis on the dynamics induced on simplicial complexes. For expansive systems remarkable properties are observed. Known examples are revisited and new examples are presented.
We construct a discrete form of Hamiltons Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einsteins theory of general relativity known as Regge calculus. A Regge-Ricci flow (RRF) equation is naturally associated to each edge, L, of a simplicial lattice. In defining this equation, we find it convenient to utilize both the simplicial lattice, S, and its circumcentric dual lattice, S*. In particular, the RRF equation associated to L is naturally defined on a d-dimensional hybrid block connecting $ell$ with its (d-1)-dimensional circumcentric dual cell, L*. We show that this equation is expressed as the proportionality between (1) the simplicial Ricci tensor, Rc_L, associated with the edge L in S, and (2) a certain volume weighted average of the fractional rate of change of the edges, lambda in L*, of the circumcentric dual lattice, S*, that are in the dual of L. The inherent orthogonality between elements of S and their duals in S* provide a simple geometric representation of Hamiltons RF equations. In this paper we utilize the well established theories of Regge calculus, or equivalently discrete exterior calculus, to construct these equations. We solve these equations for a few illustrative examples.
The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized the distributed tasks that are wait-free solvable, and thus uncovered a deep connection with algebraic topology. We present a novel interpretation of this theorem, through the notion of continuous task, defined by an input/output specification that is a continuous function. To do so, we introduce a chromatic version of a foundational result for algebraic topology: the simplicial approximation theorem. In addition to providing a different proof of the ACT, the notion of continuous task seems interesting in itself. Indeed, besides the fact that certain distributed problems are naturally specified by continuous functions, continuous tasks have an expressive power that also allows to specify the density of desired outputs for each combination of possible inputs,for example.
Graph manifolds are manifolds that decompose along tori into pieces with a tame $S^1$-structure. In this paper, we prove that the simplicial volume of graph manifolds (which is known to be zero) can be approximated by integral simplicial volumes of their finite coverings. This gives a uniform proof of the vanishing of rank gradients, Betti number gradients and torsion homology gradients for graph manifolds.
Hamiltons Ricci flow (RF) equations were recently expressed in terms of the edge lengths of a d-dimensional piecewise linear (PL) simplicial geometry, for d greater than or equal to 2. The structure of the simplicial Ricci flow (SRF) equations are dimensionally agnostic. These SRF equations were tested numerically and analytically in 3D for simple models and reproduced qualitatively the solution of continuum RF equations including a Type-1 neckpinch singularity. Here we examine a continuum limit of the SRF equations for 3D neck pinch geometries with an arbitrary radial profile. We show that the SRF equations converge to the corresponding continuum RF equations as reported by Angenent and Knopf.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا