Do you want to publish a course? Click here

Electronic structure in underdoped cuprates due to the emergence of a pseudogap

135   0   0.0 ( 0 )
 Added by James LeBlanc
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phenomenological Greens function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the resonating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, $x$, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains $1+x$ hole states) to the Luttinger pocket (which contains $x$ hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.



rate research

Read More

The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the emergence of a pseudogap. This new energy scale introduces asymmetry in the quasiparticle density of states because it is associated with the antiferromagnetic Brillouin zone. By contrast, superconductivity develops on the Fermi surface and this largely restores the particle-hole symmetry for energies below the superconducting energy gap scale. In the highly underdoped regime, these two scales can be separately identified in the density of states and also partial density of states for each fixed angle in the Brillouin zone. From the total density of states, we find that the pseudogap energy scale manifests itself differently as a function of doping for positive and negative bias. Furthermore, we find evidence from recent scanning tunneling spectroscopy data for asymmetry in the positive and negative bias of the extracted $Delta(theta)$ which is in qualitative agreement with this model. Likewise, the slope of the linear low energy density of states is nearly constant in the underdoped regime while it increases significantly with overdoping in agreement with the data.
The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a quantum critical point, is described within a model based on the resonating valence bond spin liquid which provides an ansatz for the coherent piece of the Greens function. Fermi surface reconstruction, which is an essential element of the model, has a strong effect on the superfluid density at T=0 producing a sharp drop in magnitude, but does not change the slope of the linear low temperature variation. Comparison with recent data on Bi-based cuprates provides validation of the theory and shows that the effects of correlations, captured by Gutzwiller factors, are essential for a qualitative understanding of the data. We find that the Ferrell-Glover-Tinkham sum rule still holds and we compare our results with those for the Fermi arc and the nodal liquid models.
Recent angle resolved photoemission cite{yang-nature-08} and scanning tunneling microscopy cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
Based on first principles calculations, the electronic structure of CuTeO$_4$ is discussed in the context of superconducting cuprates. Despite some significant crystallographic differences, we find that CuTeO$_4$ is similar to these cuprates, exhibiting a quasi two dimensional electronic structure that involves hybridized Cu-$d$ and O-$p$ states in the vicinity of the Fermi level, along with an antiferromagnetic insulating ground state. Hole doping this material by substituting Te$^{6+}$ with Sb$^{5+}$ would be of significant interest.
63 - E. Cimpoiasu 2001
We report magnetoconductivity measurements on YBa_2Cu_3O_x (x=6.25 and 6.36) single crystals. Our main result is that both the in-plane Delta_sigma_ab and out-of-plane Delta_sigma_c magnetoconductivities exhibit the field dependence characteristic of two-dimensional quantum interference in applied magnetic fields H parallel to the c-axis. Namely, Delta_sigma_c,ab are proportional to ln(H/H_0), with Delta_sigma_c/sigma_c substantially greater than Delta_sigma_ab/sigma_ab. We interpret this result as evidence of interlayer incoherence in these crystals, so that the phase-coherent trajectories are mostly confined to one bilayer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا