Do you want to publish a course? Click here

Synchrotron oscillation damping due to beam-beam collisions

132   0   0.0 ( 0 )
 Added by Alessandro Drago
 Publication date 2010
  fields Physics
and research's language is English
 Authors A.Drago




Ask ChatGPT about the research

In DA{Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping of synchrotron oscillations.



rate research

Read More

102 - Gennady Stupakov 2019
The fast beam-ion instability (FII) is caused by the interaction of an electron bunch train with the residual gas ions. The ion oscillations in the potential well of the electron beam have an inherent frequency spread due to the nonlinear profile of the potential. However, this frequency spread and associated with it Landau damping typically is not strong enough to suppress the instability. In this work, we develop a model of FII which takes into account the frequency spread in the electron beam due to the beam-beam interaction in an electron-ion collider. We show that with a large enough beam-beam parameter the fast ion instability can be suppressed. We estimate the strength of this effect for the parameters of the eRHIC electron-ion collider.
Detrimental beam dynamics effects limit performance of high intensity rapid cycling synchrotrons (RCS) such as the 8 GeV proton Fermilab Booster. Here we report the results of comprehensive experimental studies of various beam intensity dependent effects in the Booster. In the first part, we report the dependencies of the Booster beam intensity losses on the total number of protons per pulse and on key operational parameters such as the machine tunes and chromaticities. Then we cross-check two methods of the beam emittance measurements (the multi-wires proportional chambers and the ionization profile monitors). Finally we used the intensity dependent emittance growth effects to analyze the ultimate performance of the machine in present configuration, with the maximum space-charge tuneshift parameter Qsc of 0.6, and after its injection energy is upgraded from 0.4 GeV to 0.8 GeV.
129 - Y. Zhang 2014
We first introduce the design parameters of the Beijing Electron-Positron Collider II (BEPCII) and the simulation study of beam-beam effects during the design process of the machine. The main advances since 2007 are briefly introduced and reviewed. The longitudinal feedback system was installed to suppress the coupled bunch instability in January 2010. The horizontal tune decreased from 6.53 to 6.508 during the course of data taken in December, 2010. The saturation of the beam-beam parameter was found in 2011, and the vacuum chambers and magnets near the north crossing point were moved 15 cm in order to mitigate the long range beam-beam interaction. At the beginning of 2013, the beam-beam parameter achieved 0.04 with the new lower $alpha_{p}$ lattice and the peak luminosity achieved 7 x 10$^{32}$ cm$^{-2}$ s$^{-1}$.
Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter $K$. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.
381 - R. Bruce 2007
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the Large Hadron Collider (LHC) when it operates with 208Pb82+ ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon 63Cu29+ ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beampipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا