Do you want to publish a course? Click here

The Herschel-SPIRE instrument and its in-flight performance

125   0   0.0 ( 0 )
 Added by Matt Griffin
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Spectral and Photometric Imaging Receiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 microns, and an imaging Fourier Transform Spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 microns (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4 x 8, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.



rate research

Read More

SPIRE, the Spectral and Photometric Imaging Receiver, is the Herschel Space Observatorys submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 {mu}m, and an imaging Fourier transform spectrometer (FTS) covering 194-671 {mu}m (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the standard pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency PROBA2 mission that was launched in November 2009. LYRA acquires solar irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, that have been chosen for their relevance to solar physics, space weather and aeronomy. In this article, we briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe the way that data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.
The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands centered at 100, 143, 217, 353, 545 and 857 GHz at an angular resolution of 10 (100 GHz), 7 (143 GHz), and 5 (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009. The bolometers cooled to 100 mK as planned. The settings of the readout electronics, such as the bolometer bias current, that optimize HFIs noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn verified both the optical system and the time response of the detection chains. The optical beams are close to predictions from physical optics modeling. The time response of the detection chains is close to pre-launch measurements. The detectors suffer from an unexpected high flux of cosmic rays related to low solar activity. Due to the redundancy of Plancks observations strategy, the removal of a few percent of data contaminated by glitches does not affect significantly the sensitivity. The cosmic rays heat up significantly the bolometer plate and the modulation on periods of days to months of the heat load creates a common drift of all bolometer signals which do not affect the scientific capabilities. Only the high energy cosmic rays showers induce inhomogeneous heating which is a probable source of low frequency noise.
Since the MICROSCOPE instrument aims to measure accelerations as low as a few 10$^{-15}$,m,s$^{-2}$ and cannot operate on ground, it was obvious to have a large time dedicated to its characterization in flight. After its release and first operation, the characterization experiments covered all the aspects of the instrument design in order to consolidate the scientific measurements and the subsequent conclusions drawn from them. Over the course of the mission we validated the servo-control and even updated the PID control laws for each inertial sensor. Thanks to several dedicated experiments and the analysis of the instrument sensitivities, we have been able to identify a number of instrument characteristics such as biases, gold wire and electrostatic stiffnesses, non linearities, couplings and free motion ranges of the test-masses, which may first impact the scientific objective and secondly the analysis of the instrument good operation.
We describe the procedure used to flux calibrate the three-band submillimetre photometer in the Spectral and Photometric Imaging REceiver (SPIRE) instrument on the Herschel Space Observatory. This includes the equations describing the calibration scheme, a justification for using Neptune as the primary calibration source, a description of the observations and data processing procedures used to derive flux calibration parameters (for converting from voltage to flux density) for every bolometer in each array, an analysis of the error budget in the flux calibration for the individual bolometers, and tests of the flux calibration on observations of primary and secondary calibrators. The procedure for deriving the flux calibration parameters is divided into two parts. In the first part, we use observations of astronomical sources in conjunction with the operation of the photometer internal calibration source to derive the unscaled derivatives of the flux calibration curves. To scale the calibration curves in Jy/beam/V, we then use observations of Neptune in which the beam of each bolometer is mapped using Neptune observed in a very fine scan pattern. The total instrumental uncertainties in the flux calibration for the individual bolometers is ~0.5% for most bolometers, although a few bolometers have uncertainties of ~1-5% because of issues with the Neptune observations. Based on application of the flux calibration parameters to Neptune observations performed using typical scan map observing modes, we determined that measurements from each array as a whole have instrumental uncertainties of 1.5%. This is considerably less than the absolute calibration uncertainty associated with the model of Neptune, which is estimated at 4%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا