Nonequivalence of ensembles in the Curie-Weiss anisotropic quantum Heisenberg model


Abstract in English

The microcanonical entropy s(e,m) as a function of the energy e and the magnetization m is computed analytically for the anisotropic quantum Heisenberg model with Curie-Weiss-type interactions. The result shows a number of interesting properties which are peculiar to long-range interacting systems, including nonequivalence of ensembles and partial equivalence. Furthermore, from the shape of the entropy it follows that the Curie-Weiss Heisenberg model is indistinguishable from the Curie-Weiss Ising model in canonical thermodynamics, although their microcanonical thermodynamics in general differs. The possibility of experimentally realizing quantum spin models with long-range interactions in a microcanonical setting by means of cold dipolar gases in optical lattices is discussed.

Download