No Arabic abstract
We report spectroscopic confirmation and high-resolution infrared imaging of a z=2.79 triply-imaged galaxy behind the Bullet Cluster. This source, a Spitzer-selected luminous infrared galaxy (LIRG), is confirmed via polycyclic aromatic hydrocarbon (PAH) features using the Spitzer Infrared Spectrograph (IRS) and resolved with HST WFC3 imaging. In this galaxy, which with a stellar mass of M*=4e9 Msun is one of the two least massive ones studied with IRS at z>2, we also detect H_2 S(4) and H_2 S(5) pure rotational lines (at 3.1 sigma and 2.1 sigma) - the first detection of these molecular hydrogen lines in a high-redshift galaxy. From the molecular hydrogen lines we infer an excitation temperature T=377+68-84 K. The detection of these lines indicates that the warm molecular gas mass is 6(+36-4)% of the stellar mass and implies the likely existence of a substantial reservoir of cold molecular gas in the galaxy. Future spectral observations at longer wavelengths with facilities like the Herschel Space Observatory, the Large Millimeter Telescope, and the Atacama Pathfinder EXperiment (APEX) thus hold the promise of precisely determining the total molecular gas mass. Given the redshift, and using refined astrometric positions from the high resolution imaging, we also update the magnification estimate and derived fundamental physical properties of this system. The previously published values for total infrared luminosity, star formation rate, and dust temperature are confirmed modulo the revised magnification; however we find that PAH emission is roughly a factor of five stronger than would be predicted by the relations between the total infrared and PAH luminosity reported for SMGs and starbursts in Pope et al. (2008).
We present evidence for a Spitzer-selected luminous infrared galaxy (LIRG) behind the Bullet Cluster. The galaxy, originally identified in IRAC photometry as a multiply imaged source, has a spectral energy distribution consistent with a highly extincted (A_V~3.3), strongly star-forming galaxy at z=2.7. Using our strong gravitational lensing model presented in Bradac et al. (2006), we find that the magnifications are 10 to 50 for the three images of the galaxy. The implied infrared luminosity is consistent with the galaxy being a LIRG, with a stellar mass of M_*~2e11 M_Sun and a star formation rate of ~90 M_Sun/yr. With lensed fluxes at 24 microns of 0.58 mJy and 0.39 mJy in the two brightest images, this galaxy presents a unique opportunity for detailed study of an obscured starburst with star fomation rate comparable to that of L* galaxies at z>2.
We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z 850LP-band dropout behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 {AA} at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 pm 0.003. The integrated line flux is f = (0.7 pm 0.1 pm 0.3) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 pm 0.2 the intrinsic (corrected for lensing) flux is f^int = (0.23 pm 0.03 pm 0.10 pm 0.02) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int(H_160W)=27.57 pm 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.
We report the discovery of a multiply lensed Ly Alpha (Lya) emitter at z = 3.90 behind the massive galaxy cluster WARPS J1415.1+3612 at z = 1.026. Images taken by the Hubble Space Telescope(HST) using ACS reveal a complex lensing system that produces a prominent, highly magnified arc and a triplet of smaller arcs grouped tightly around a spectroscopically confirmed cluster member. Spectroscopic observations using FOCAS on Subaru confirm strong Lya emission in the source galaxy and provide redshifts for more than 21 cluster members, from which we obtain a velocity dispersion of 807+/-185 km/s. Assuming a singular isothermal sphere profile, the mass within the Einstein ring (7.13+/-0.38) corresponds to a central velocity dispersion of 686+15-19 km/s for the cluster, consistent with the value estimated from cluster member redshifts. Our mass profile estimate from combining strong lensing and dynamical analyses is in good agreement with both X-ray and weak lensing results.
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 micron bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 micron and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 micron selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities.This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.