Do you want to publish a course? Click here

Stability of the Einstein Static Universe in open cosmological models

115   0   0.0 ( 0 )
 Added by Luca Parisi Ph.D.
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stability properties of the Einstein Static solution of General Relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein Static solutions in the semiclassical regime of Loop Quantum Cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravity under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according with the admitted values of the parameters.



rate research

Read More

We consider static cosmological solutions along with their stability properties in the framework of a recently proposed theory of massive gravity. We show that the modifcation introduced in the cosmological equations leads to several new solutions, only sourced by a perfect fluid, generalizing the Einstein Static Universe found in General Relativity. Using dynamical system techniques and numerical analysis, we show that the found solutions can be either neutrally stable or unstable against spatially homogeneous and isotropic perturbations.
We use a dynamical systems analysis to investigate the future behaviour of Einstein-Aether cosmological models with a scalar field coupling to the expansion of the aether and a non-interacting perfect fluid. The stability of the equilibrium solutions are analysed and the results are compared with the standard inflationary cosmological solutions and previously studied cosmological Einstein-Aether models.
57 - John D Barrow 2003
We show using covariant techniques that the Einstein static universe containing a perfect fluid is always neutrally stable against small inhomogeneous vector and tensor perturbations and neutrally stable against adiabatic scalar density inhomogeneities so long as c_{s}^2>1/5, and unstable otherwise. We also show that the stability is not significantly changed by the presence of a self-interacting scalar field source, but we find that spatially homogeneous Bianchi type IX modes destabilise an Einstein static universe. The implications of these results for the initial state of the universe and its pre-inflationary evolution are also discussed.
We consider a cosmology in which the final stage of the Universe is neither accelerating nor decelerating, but approaches an asymptotic state where the scale factor becomes a constant value. In order to achieve this, we first bring in a scale factor with the desired property and then determine the details of the energy contents as a result of the cosmological evolution equations. We show that such a scenario can be realized if we introduce a generalized quintom model which consists of a scalar field and a phantom with a {it negative} cosmological constant term. The standard cold dark matter with $w_m=0$ is also introduced. This is possible basically due to the balance between the matter and the {it negative} cosmological constant which tend to attract and scalar field and phantom which repel in the asymptotic region. The stability analysis shows that this asymptotic solution is classically stable.
We discuss scalar-tensor realizations of the Anamorphic cosmological scenario recently proposed by Ijjas and Steinhardt. Through an analysis of the dynamics of cosmological perturbations we obtain constraints on the parameters of the model. We also study gravitational Parker particle production in the contracting Anamorphic phase and we compute the fraction between the energy density of created particles at the end of the phase and the background energy density. We find that, as in the case of inflation, a new mechanism is required to reheat the universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا