Do you want to publish a course? Click here

Covariance, correlation matrix and the multi-scale community structure of networks

111   0   0.0 ( 0 )
 Added by Huawei Shen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this article, we consider detecting the multi-scale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multi-scale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multi-scale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multi-scale community structure of network, as well as the translation and rotation transformations.



rate research

Read More

Many real-world networks display a natural bipartite structure. It is necessary and important to study the bipartite networks by using the bipartite structure of the data. Here we propose a modification of the clustering coefficient given by the fraction of cycles with size four in bipartite networks. Then we compare the two definitions in a special graph, and the results show that the modification one is better to character the network. Next we define a edge-clustering coefficient of bipartite networks to detect the community structure in original bipartite networks.
The analysis of temporal networks has a wide area of applications in a world of technological advances. An important aspect of temporal network analysis is the discovery of community structures. Real data networks are often very large and the communities are observed to have a hierarchical structure referred to as multi-scale communities. Changes in the community structure over time might take place either at one scale or across all scales of the community structure. The multilayer formulation of the modularity maximization (MM) method introduced captures the changing multi-scale community structure of temporal networks. This method introduces a coupling between communities in neighboring time layers by allowing inter-layer connections, while different values of the resolution parameter enable the detection of multi-scale communities. However, the range of this parameters values must be manually selected. When dealing with real life data, communities at one or more scales can go undiscovered if appropriate parameter ranges are not selected. A novel Temporal Multi-scale Community Detection (TMSCD) method overcomes the obstacles mentioned above. This is achieved by using the spectral properties of the temporal network represented as a multilayer network. In this framework we select automatically the range of relevant scales within which multi-scale community partitions are sought.
Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
It has been shown that the communities of complex networks often overlap with each other. However, there is no effective method to quantify the overlapping community structure. In this paper, we propose a metric to address this problem. Instead of assuming that one node can only belong to one community, our metric assumes that a maximal clique only belongs to one community. In this way, the overlaps between communities are allowed. To identify the overlapping community structure, we construct a maximal clique network from the original network, and prove that the optimization of our metric on the original network is equivalent to the optimization of Newmans modularity on the maximal clique network. Thus the overlapping community structure can be identified through partitioning the maximal clique network using any modularity optimization method. The effectiveness of our metric is demonstrated by extensive tests on both the artificial networks and the real world networks with known community structure. The application to the word association network also reproduces excellent results.
Social structures emerge as a result of individuals managing a variety of different of social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various network layers in the multiplex. Community size distributions are either similar to a power-law or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex. Depending on link- and node fluctuation rates, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. We show that the empirical pairwise similarities of network layers, in terms of link overlap and degree correlations, practically coincide with the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا