No Arabic abstract
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. Here, we study the decoherence in noninertial frames for the first time. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Robs qubit underging decoherence sudden death may only occur when the acceleration parameter is greater than a critical point.
Quantum decoherence can arise due to classical fluctuations in the parameters which define the dynamics of the system. In this case decoherence, and complementary noise, is manifest when data from repeated measurement trials are combined. Recently a number of authors have suggested that fluctuations in the space-time metric arising from quantum gravity effects would correspond to a source of intrinsic noise, which would necessarily be accompanied by intrinsic decoherence. This work extends a previous heuristic modification of Schr{o}dinger dynamics based on discrete time intervals with an intrinsic uncertainty. The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, in a way consistent with other modifications suggested by quantum gravity and string theory .
The classical and quantum correlations sharing between modes of the Dirac fields in the noninertial frame are investigated. It is shown that: (i) The classical correlation for the Dirac fields decreases as the acceleration increases, which is different from the result of the scalar field that the classical correlation is independent of the acceleration; (ii) There is no simple dominating relation between the quantum correlation and entanglement for the Dirac fields, which is unlike the scalar case where the quantum correlation is always over and above the entanglement; (iii) As the acceleration increases, the correlations between modes $I$ and $II$ and between modes $A$ and $II$ increase, but the correlations between modes $A$ and $I$ decrease.
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle.
Reference frames are of special importance in physics. They are usually considered to be idealized entities. However, in most situations, e.g. in laboratories, physical processes are described within reference frames constituted by physical systems. As new technological developments make it possible to demonstrate quantum properties of complex objects an interesting conceptual problem arises: Could one use states of quantum systems to define reference frames? Recently such a framework has been introduced in [F. Giacomini, E. Castro-Ruiz, and v{C}. Brukner, Nat Commun 10, 494 (2019)]. One of its consequences is the fact that quantum correlations depend on a physical state of an observers reference frame. The aim of this work is to examine the dynamical aspect of this phenomena and show that the same is true for correlations established during an evolution of a composite systems. Therefore, decoherence process is also relative: For some observers the reduced evolution of subsystems is unitary, whereas for others not. I also discuss implications of this results for modern developments of decoherence theory: Quantum Darwinism and Spectrum Broadcast Structures.
It is shown that the Jordan frame and its conformally transformed version, the Einstein frame of nonminimally coupled theories of gravity, are actually equivalent at the quantum level. The example of the theory taken up is the Brans-Dicke theory, and the wave packet calculations are done for a homogeneous and isotropic cosmological model in the purest form of the theory, i.e., in the absence of any additional matter sector. The calculations are clean and exact, and the result obtained are unambiguous.