Flexible Macroscopic Models for Dense-Fluid Shockwaves: Partitioning Heat and Work; Delaying Stress and Heat Flux; Two-Temperature Thermal Relaxation


Abstract in English

Macroscopic models which distinguish the longitudinal and transverse temperatures can provide improved descriptions of the microscopic shock structures as revealed by molecular dynamics simulations. Additionally, we can include three relaxation times in the models, two based on Maxwells viscoelasticity and its Cattaneo-equation analog for heat flow, and a third thermal, based on the Krook-Boltzmann equation. This approach can replicate the observed lags of stress (which lags behind the strain rate) and heat flux (which lags behind the temperature gradient), as well as the eventual equilibration of the two temperatures. For profile stability the time lags cannot be too large. By partitioning the longitudinal and transverse contributions of work and heat and including a tensor heat conductivity and bulk viscosity, all the qualitative microscopic features of strong simple-fluid shockwave structures can be reproduced.

Download