Let $R=Bbbk[x_1,...,x_m]$ be the polynomial ring over a field $Bbbk$ with the standard $mathbb Z^m$-grading (multigrading), let $L$ be a Noetherian multigraded $R$-module, let $beta_{i,alpha}(L)$ the $i$th (multigraded) Betti number of $L$ of multidegree $a$. We introduce the notion of a generic (relative to $L$) multidegree, and the notion of multigraded module of generic type. When the multidegree $a$ is generic (relative to $L$) we provide a Hochster-type formula for $beta_{i,alpha}(L)$ as the dimension of the reduced homology of a certain simplicial complex associated with $L$. This allows us to show that there is precisely one homological degree $ige 1$ in which $beta_{i,alpha}(L)$ is non-zero and in this homological degree the Betti number is the $beta$-invariant of a certain minor of a matroid associated to $L$. In particular, this provides a precise combinatorial description of all multigraded Betti numbers of $L$ when it is a multigraded module of generic type.