We study evolution of isolated neutron stars on long time scale and calculate distribution of these sources in the main evolutionary stages: Ejector, Propeller, Accretor, and Georotator. We compare different initial magnetic field distributions taking into account a possibility of magnetic field decay, and include in our calculations the stage of subsonic Propeller. It is shown that though the subsonic propeller stage can be relatively long, initially highly magnetized neutron stars ($B_0ga 10^{13}$ G) reach the accretion regime within the Galactic lifetime if their kick velocities are not too large. The fact that in previous studies made $>$10 years ago, such objects were not considered results in a slight increase of the Accretor fraction in comparison with earlier conclusions. Most of the neutron stars similar to the Magnificent seven are expected to become accreting from the interstellar medium after few billion years of their evolution. They are the main predecestors of accreting isolated neutron stars.