On Simsun and Double Simsun Permutations Avoiding a Pattern of Length Three


Abstract in English

A permutation $sigmainmathfrak{S}_n$ is simsun if for all $k$, the subword of $sigma$ restricted to ${1,...,k}$ does not have three consecutive decreasing elements. The permutation $sigma$ is double simsun if both $sigma$ and $sigma^{-1}$ are simsun. In this paper we present a new bijection between simsun permutations and increasing 1-2 trees, and show a number of interesting consequences of this bijection in the enumeration of pattern-avoiding simsun and double simsun permutations. We also enumerate the double simsun permutations that avoid each pattern of length three.

Download