Do you want to publish a course? Click here

Estimating dissipation from single stationary trajectories

100   0   0.0 ( 0 )
 Added by \\'Edgar Rold\\'an
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this Letter we show that the time reversal asymmetry of a stationary time series provides information about the entropy production of the physical mechanism generating the series, even if one ignores any detail of that mechanism. We develop estimators for the entropy production which can detect non-equilibrium processes even when there are no measurable flows in the time series.



rate research

Read More

130 - Ying-Jen Yang , Hong Qian 2021
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and in the future. A generalized Einstein relation is a consequence solely because the dynamics being stationary; and the Green-Kubo formula reflects a balance between the two mechanisms. Equilibrium with reversibility is characterized by a novel covariance symmetry.
We study the critical behavior of the nonequilibrium dynamics and of the steady states emerging from the competition between coherent and dissipative dynamics close to quantum phase transitions. The latter is induced by the coupling of the system with a Markovian bath, such that the evolution of the systems density matrix can be effectively described by a Lindblad master equation. We devise general scaling behaviors for the out-of-equilibrium evolution and the stationary states emerging in the large-time limit for generic initial conditions, in terms of the parameters of the Hamiltonian providing the coherent driving and those associated with the dissipative interactions with the environment. Our framework is supported by numerical results for the dynamics of a one-dimensional lattice fermion gas undergoing a quantum Ising transition, in the presence of dissipative mechanisms which include local pumping and decay of particles.
We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, a dissipative version of the quantum Ising model, and the micromaser. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and in general dynamical phase behavior needs to be uncovered by observables which are strictly dynamical, e.g. dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.
Fluctuation-dissipation relations or theorems (FDTs) are fundamental for statistical physics and can be rigorously derived for equilibrium systems. Their applicability to non-equilibrium systems is, however, debated. Here, we simulate an active microrheology experiment, in which a spherical colloid is pulled with a constant external force through a fluid, creating near-equilibrium and far-from-equilibrium systems. We characterize the structural and dynamical properties of these systems, and reconstruct an effective generalized Langevin equation (GLE) for the colloid dynamics. Specifically, we test the validity of two FDTs: The first FDT relates the non-equilibrium response of a system to equilibrium correlation functions, and the second FDT relates the memory friction kernel in the GLE to the stochastic force. We find that the validity of the first FDT depends strongly on the strength of the external driving: it is fulfilled close to equilibrium and breaks down far from it. In contrast, we observe that the second FDT is always fulfilled. We provide a mathematical argument why this generally holds for memory kernels reconstructed from a deterministic Volterra equation for correlation functions, even for non-stationary non-equilibrium systems. Motivated by the Mori-Zwanzig formalism, we therefore suggest to impose an orthogonality constraint on the stochastic force, which is in fact equivalent to the validity of this Volterra equation. Such GLEs automatically satisfy the second FDT and are unique, which is desirable when using GLEs for coarse-grained modeling.
While seemingly straightforward in principle, the reliable estimation of rate constants is seldom easy in practice. Numerous issues, such as the complication of poor reaction coordinates, cause obvious approaches to yield unreliable estimates. When a reliable order parameter is available, the reactive flux theory of Chandler allows the rate constant to be extracted from the plateau region of an appropriate reactive flux function. However, when applied to real data from single-molecule experiments or molecular dynamics simulations, the rate can sometimes be difficult to extract due to the numerical differentiation of a noisy empirical correlation function or difficulty in locating the plateau region at low sampling frequencies. We present a modified version of this theory which does not require numerical derivatives, allowing rate constants to be robustly estimated from the time-correlation function directly. We compare these approaches using single-molecule force spectroscopy measurements of an RNA hairpin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا