Do you want to publish a course? Click here

An Improved Method for Estimating the Masses of Stars with Transiting Planets

160   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

To determine the physical parameters of a transiting planet and its host star from photometric and spectroscopic analysis, it is essential to independently measure the stellar mass. This is often achieved by the use of evolutionary tracks and isochrones, but the mass result is only as reliable as the models used. The recent paper by Torres et al (2009) showed that accurate values for stellar masses and radii could be obtained from a calibration using T_eff, log g and [Fe/H]. We investigate whether a similarly good calibration can be obtained by substituting log rho - the fundamental parameter measured for the host star of a transiting planet - for log g, and apply this to star-exoplanet systems. We perform a polynomial fit to stellar binary data provided in Torres et al (2009) to obtain the stellar mass and radius as functions of T_eff, log rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo analysis. We apply the resulting equations to measurements for seventeen SuperWASP host stars, and also demonstrate the application of the calibration in a Markov Chain Monte Carlo analysis to obtain accurate system parameters where spectroscopic estimates of effective stellar temperature and metallicity are available. We show that the calibration using log rho produces accurate values for the stellar masses and radii; we obtain masses and radii of the SuperWASP stars in good agreement with isochrone analysis results. We ascertain that the mass calibration is robust against uncertainties resulting from poor photometry, although a good estimate of stellar radius requires good-quality transit light curve to determine the duration of ingress and egress.



rate research

Read More

262 - C. A. Watson 2010
All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. It is, however, possible to determine the inclination angle, i, between the rotation axis of a star and an observers line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P_rot) and the stellar radius (R_star). This allows the removal of the sin i dependency of spectroscopically derived extra-solar planet masses under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis. We have carried out an extensive literature search and present a catalogue of v sin i, P_rot, and R_star estimates for exoplanet host stars. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R_star estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper 1-sigma two-tailed confidence limits to be placed on the derived sin is along with the transit probability for each planet to be determined. While a small proportion of systems yield sin is significantly greater than 1, most likely due to poor P_rot estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of ~90 degrees and high transit probabilities. In total, we estimate the true masses of 133 extra-solar planets. Of these, only 6 have revised masses that place them above the 13 Jupiter mass deuterium burning limit. Our work reveals a population of high-mass planets with low eccentricities and we speculate that these may represent the signature of different planetary formation mechanisms at work.
Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
The phenomenon of microlensing has successfully been used to detect extrasolar planets. By observing characteristic, rare deviations in the gravitational microlensing light curve one can discover that a lens is a star--planet system. In this paper we consider an opposite case where the lens is a single star and the source has a transiting planetary companion. We have studied the light curve of a source star with transiting companion magnified during microlensing event. Our model shows that in dense stellar fields, in which blending is significant, the light drop generated by transits is greater near the maximum of microlensing, which makes it easier to detect. We derive the probability for the detection of a planetary transit in a microlensed source to be of 2*10^(-6) for an individual microlensing event.
HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02+/-0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (rho_b = 5.60+2.15-1.43 g/cm^3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho_c = 1.97+0.94-0.59 g/cm^3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90+/-0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the systems instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASA TESS mission.
We point out an intriguing relation between the masses of the transiting planets and their orbital periods. For the six currently known transiting planets, the data are consistent with a decreasing linear relation. The other known short-period planets, discovered through radial-velocity techniques, seem to agree with this relation. We briefly speculate about a tentative physical model to explain such a dependence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا