No Arabic abstract
The high-frequency radio sky, like the gamma-ray sky surveyed by the Fermi satellite, is dominated by flat spectrum radio quasars and BL Lac objects at bright flux levels. To investigate the relationship between radio and gamma-ray emission in extragalactic sources, we have cross-matched the Australia Telescope 20 GHz survey catalog (AT20G) with the Fermi-LAT 1 year Point Source Catalog (1FGL). The 6.0 sr of sky covered by both catalogs ({delta} < 0circ, |b| > 1.circ 5) contains 5890 AT20G radio sources and 604 1FGL gamma-ray sources. The AT20G source positions are accurate to within ~1 arcsec and, after excluding known Galactic sources, 43% of Fermi 1FGL sources have an AT20G source within the 95% Fermi confidence ellipse. Monte Carlo tests imply that at least 95% of these matches are genuine associations. Only five gamma-ray sources (1% of the Fermi catalog) have more than one AT20G counterpart in the Fermi error box. The AT20G matches also generally support the active galactic nucleus (AGN) associations in the First LAT AGN Catalog. We find a trend of increasing gamma-ray flux density with 20 GHz radio flux density. The Fermi detection rate of AT20G sources is close to 100% for the brightest 20 GHz sources, decreasing to 20% at 1 Jy, and to roughly 1% at 100 mJy. Eight of the matched AT20G sources have no association listed in 1FGL and are presented here as potential gamma-ray AGNs for the first time.We also identify an alternative AGN counterpart to one 1FGL source. The percentage of Fermi sources with AT20G detections decreases toward the Galactic plane, suggesting that the 1FGL catalog contains at least 50 Galactic gamma-ray sources in the southern hemisphere that are yet to be identified.
BL Lac Objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs) are radio-loud active galaxies (AGNs) whose jets are seen at a small viewing angle (blazars), while Misaligned Active Galactic Nuclei (MAGNs) are mainly radiogalaxies of type FRI or FRII and Steep Spectrum Radio Quasars (SSRQs), which show jets of radiation oriented away from the observers line of sight. MAGNs are very numerous and well studied in the lower energies of the electromagnetic spectrum but are not commonly observed in the gamma-ray energy range, because their inclination leads to the loss of relativistic boosting of the jet emission. The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope in the 100 MeV -300 GeV energy range detected only 18 MAGNs (15 radio galaxies and 3 SSRQs) compared to 1144 blazars. Studying MAGNs and their environment in the gamma-ray sky is extremely interesting, because FRI and FRII radio galaxies are respectively considered the parent populations of BL Lacs and FSRQs, and these account for more than 50% of the known gamma-ray sources. The aim of this study is to hunt new gamma-ray MAGN candidates among the remaining blazars of uncertain type and unassociated AGNs, using machine learning techniques and other physical constraints when strict classifications are not available. We found 10 new MAGN candidates associated with gamma-ray sources. Their features are consistent with a source with a misaligned jet of radiation. This study reinforces the need for more systematic investigation of MAGNs in order to improve understanding of the radiation emission mechanisms and and the disparity of detection between more powerful and weaker gamma-ray AGNs.
We present a summary of the Fermi Pulsar Search Consortium (PSC), an international collaboration of radio astronomers and members of the Large Area Telescope (LAT) collaboration, whose goal is to organize radio follow-up observations of Fermi pulsars and pulsar candidates among the LAT gamma-ray source population. The PSC includes pulsar observers with expertise using the worlds largest radio telescopes that together cover the full sky. We have performed very deep observations of all 35 pulsars discovered in blind frequency searches of the LAT data, resulting in the discovery of radio pulsations from four of them. We have also searched over 300 LAT gamma-ray sources that do not have strong associations with known gamma-ray emitting source classes and have pulsar-like spectra and variability characteristics. These searches have led to the discovery of a total of 43 new radio millisecond pulsars (MSPs) and four normal pulsars. These discoveries greatly increase the known population of MSPs in the Galactic disk, more than double the known population of so-called `black widow pulsars, and contain many promising candidates for inclusion in pulsar timing arrays.
We present polarization measurements at 8.4, 22, and 43 GHz made with the VLA of a complete sample of extragalactic sources stronger than 1 Jy in the 5-year WMAP catalogue and with declinations north of -34 degrees. The observations were motivated by the need to know the polarization properties of radio sources at frequencies of tens of GHz in order to subtract polarized foregrounds for future sensitive Cosmic Microwave Background (CMB) experiments. The total intensity and polarization measurements are generally consistent with comparable VLA calibration measurements for less-variable sources, and within a similar range to WMAP fluxes for unresolved sources. A further paper will present correlations between measured parameters and derive implications for CMB measurements.
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120--180 MHz) blazar spectral index is $langle alpha_mathrm{low} rangle=0.57pm0.02$: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at $sim$GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.
We report on the results of X-ray and radio follow-up observations of two GeV gamma-ray sources 2FGL J0923.5+1508 and 2FGL J1502.1+5548, selected as candidates for high-redshift blazars from unassociated sources in the {it Fermi} Large Area Telescope Second Source Catalog. We utilize the Suzaku satellite and the VLBI Exploration of Radio Astrometry (VERA) telescopes for X-ray and radio observations, respectively. For 2FGL J0923.5+1508, a possible radio counterpart NVSS J092357+150518 is found at 1.4 GHz from an existing catalog, but we do not detect any X-ray emission from it and derive a flux upper limit $F_{rm 2-8 keV} <$ 1.37 $times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$. Radio observations at 6.7 GHz also result in an upper limit of $S_{rm 6.7 GHz}$ $<$ 19 mJy, implying a steep radio spectrum that is not expected for a blazar. On the other hand, we detect X-rays from NVSS J150229+555204, the potential 1.4 GHz radio counterpart of 2FGL J1502.1+5548. The X-ray spectrum can be fitted with an absorbed power-law model with a photon index $gamma$=1.8$^{+0.3}_{-0.2}$ and the unabsorbed flux is $F_{rm 2-8 keV}$=4.3$^{+1.1}_{-1.0}$ $times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$. Moreover, we detect unresolved radio emission at 6.7 GHz with flux $S_{rm 6.7 GHz}$=30.1 mJy, indicating a compact, flat-spectrum radio source. If NVSS J150229+555204 is indeed associated with 2FGL J1502.1+5548, we find that its multiwavelength spectrum is consistent with a blazar at redshift $z sim 3-4$.