Do you want to publish a course? Click here

Long-lived stops in MSSM scenarios with a neutralino LSP

129   0   0.0 ( 0 )
 Added by Marianne Johansen
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

This work investigates the possibility of a long-lived stop squark in supersymmetric models with the neutralino as the lightest supersymmetric particle (LSP). We study the implications of meta-stable stops on the sparticle mass spectra and the dark matter density. We find that in order to obtain a sufficiently long stop lifetime so as to be observable as a stable R-hadron at an LHC experiment, we need to fine tune the mass degeneracy between the stop and the LSP considerably. This increases the stop-neutralino coanihilation cross section, leaving the neutralino relic density lower than what is expected from the WMAP results for stop masses ~1.5 TeV/c^2. However, if such scenarios are realised in nature we demonstrate that the long-lived stops will be produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c^2 can be detected after one year of running at design luminosity.



rate research

Read More

We consider the regions of the MSSM parameter space where the top squarks become light and even may be the LSP. This happens when the triple scalar coupling A becomes very big compared to m_0. We show that in this case the requirement that the LSP is neutral imposes noticeable constraint on the parameter space excluding low m_0 and m_{1/2} similar to constraint from the Higgs mass limit. In some cases these constraints overlap. This picture takes place in a wide region of tanbeta. In a narrow band close to the border line the stops are long-lived particles and decay into quarks and neutralino (chargino). The cross-section of their production at LHC via gluon fusion mechanism in this region may reach a few pb.
We analyse the possibility to get light long-lived charginos within the framework of the MSSM with gravity mediated SUSY breaking. We find out that this possibility can be realized in the so-called focus-point region of parameter space. The mass degeneracy of higgsino-like chargino and two higgsino-like neutralinos is the necessary condition for a long lifetime. It requires the fine-tuning of parameters, but being a single additional constraint in the whole parameter space it can be fulfilled in the Constrained MSSM along the border line where radiative electroweak symmetry breaking fails. In a narrow band close to the border line the charginos are long-lived particles. The cross-sections of their production and co-production at the LHC via electroweak interaction reach a few tenth of pb.
Supersymmetric models provide many new complex phases which lead to CP violating effects in collider experiments. As an example, CP-sensitive triple product asymmetries in neutralino production and subsequent leptonic two-body decays are studied within the Minimal Supersymmetric Standard Model. A full ILD detector simulation has been performed at a center of mass energy of 500GeV, including the relevant Standard Model background processes, a realistic beam energy spectrum, beam backgrounds and a beam polarization of 80% and -60% for the electron and positron beams, respectively. Assuming an integrated luminosity of 500fb-1 collected by the experiment and the performance of the current ILD detector, a relative measurement accuracy of 10% for the CP-sensitive asymmetry can be achieved in the chosen scenario.
We study SUSY signatures at the 7, 8 and 14 TeV LHC employing the 19-parameter, R-Parity conserving p(henomenological)MSSM, in the scenario with a neutralino LSP. Our results were obtained via a fast Monte Carlo simulation of the ATLAS SUSY analysis suite. The flexibility of this framework allows us to study a wide variety of SUSY phenomena simultaneously and to probe for weak spots in existing SUSY search analyses. We determine the ranges of the sparticle masses that are either disfavored or allowed after the searches with the 7 and 8 TeV data sets are combined. We find that natural SUSY models with light squarks and gluinos remain viable. We extrapolate to 14 TeV with both 300 fb$^{-1}$ and 3 ab$^{-1}$ of integrated luminosity and determine the expected sensitivity of the jets + MET and stop searches to the pMSSM parameter space. We find that the high-luminosity LHC will be powerful in probing SUSY with neutralino LSPs and can provide a more definitive statement on the existence of natural Supersymmetry.
Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibility of light selectons and smuons, and of light higgsino- or wino-like charginos. In addition to the latest limits from direct and indirect detection of dark matter, ATLAS and CMS constraints on electroweak-inos and on sleptons are taken into account using a simplified models framework. Measurements of the properties of the Higgs boson at 125 GeV, which constrain amongst others the invisible decay of the Higgs boson into a pair of neutralinos, are also implemented in the analysis. We show that viable neutralino dark matter can be achieved for masses as low as 15 GeV. In this case, light charginos close to the LEP bound are required in addition to light right-chiral staus. Significant deviations are observed in the couplings of the 125 GeV Higgs boson. These constitute a promising way to probe the light neutralino dark matter scenario in the next run of the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا