Do you want to publish a course? Click here

Arbitrary Control of Entanglement between Two Superconducting Resonators

228   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a method to synthesize an arbitrary quantum state of two superconducting resonators. This state-synthesis algorithm utilizes a coherent interaction of each resonator with a tunable artificial atom to create entangled quantum superpositions of photon number (Fock) states in the resonators. We theoretically analyze this approach, showing that it can efficiently synthesize NOON states, with large photon numbers, using existing technology.



rate research

Read More

130 - T. Miyanaga , A. Tomonaga , H. Ito 2021
We investigate the ultrastrong tunable coupler for coupling of superconducting resonators. Obtained coupling constant exceeds 1 GHz, and the wide range tunability is achieved both antiferromagnetics and ferromagnetics from -1086 MHz to 604 MHz. Ultrastrong coupler is composed of rf-SQUID and dc-SQUID as tunable junctions, which connected to resonators via shared aluminum thin film meander lines enabling such a huge coupling constant. The spectrum of the coupler obviously shows the breaking of the rotating wave approximation, and our circuit model treating the Josephson junction as a tunable inductance reproduces the experimental results well. The ultrastrong coupler is expected to be utilized in quantum annealing circuits and/or NISQ devices with dense connections between qubits.
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly-excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of 90% (unconstrained) and 86% (maximum likelihood estimator).
72 - Z. Kis , E. Paspalakis 2003
We propose a new approach for the arbitrary rotation of a three-level SQUID qubit and describe a new strategy for the creation of coherence transfer and entangled states between two three-level SQUID qubits. The former is succeeded by exploring the coupled-uncoupled states of the system when irradiated with two microwave pulses, and the latter is succeeded by placing the SQUID qubits into a microwave cavity and used adiabatic passage methods for their manipulation.
We perform an experimental and numerical study of dielectric loss in superconducting microwave resonators at low temperature. Dielectric loss, due to two-level systems, is a limiting factor in several applications, e.g. superconducting qubits, Josephson parametric amplifiers, microwave kinetic-inductance detectors, and superconducting single-photon detectors. Our devices are made of disordered NbN, which, due to magnetic-field penetration, necessitates 3D finite-element simulation of the Maxwell--London equations at microwave frequencies to accurately model the current density and electric field distribution. From the field distribution, we compute the geometric filling factors of the lossy regions in our resonator structures and fit the experimental data to determine the intrinsic loss tangents of its interfaces and dielectrics. We emphasise that the loss caused by a spin-on-glass resist such as hydrogen silsesquioxane (HSQ), used for ultrahigh lithographic resolution relevant to the fabrication of nanowires, and find that, when used, HSQ is the dominant source of loss, with a loss tangent of $delta^i_{HSQ} = 8 times 10^{-3}$.
An all-resonant method is proposed to control the quantum state of superconducting resonators. This approach uses a tunable artificial atom linearly coupled to resonators, and allows for efficient routes to Fock state synthesis, qudit logic operations, and synthesis of NOON states. This resonant approach is theoretically analyzed, and found to perform signficantly better than existing proposals using the same technology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا