Do you want to publish a course? Click here

Investigation of Phase Diagram and Bulk Thermodynamic Properties using PNJL Model with Eight-Quark Interactions

170   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We present the bulk thermodynamic properties and phase diagram of strongly interacting matter in an extension of the 3-flavor NJL and PNJL models of QCD. Using a three momentum cut-off scheme, we have extended the multiquark interaction terms up to eight order so that the stability of the vacuum is ensured in these models. We explore the effects of various combinations of the two eight-quark couplings $g_1$ and $g_2$ and present a comparative study between the NJL and PNJL models as well as Lattice QCD data. The main effect of the eight-quark interaction term is to shift the critical end point in the $T-mu$ phase diagram to a lower value of $mu$ and higher value of $T$, thus bringing them closer to Lattice QCD results.



rate research

Read More

We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu--Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.
We have investigated the fluctuations and the higher order susceptibilities of quark number, isospin number, electric charge and strangeness at vanishing chemical potential for 2+1 flavor Polyakov loop extended Nambu--Jona-Lasinio model. The calculations are performed for the bound effective potential in the quark sector requiring up to eight quark interaction terms. These have been contrasted to the lattice results which currently have somewhat heavier quarks in the light flavor sector. The results show sufficient qualitative agreement. For comparison we also present the results obtained with the conventional effective potential containing upto six quark interaction terms.
We present a study of correlations among conserved charges like baryon number, electric charge and strangeness in the framework of 2+1 flavor Polyakov loop extended Nambu-Jona-Lasinio model at vanishing chemical potentials, up to fourth order. Correlations up to second order have been measured in Lattice QCD which compares well with our estimates given the inherent difference in the pion masses in the two systems. Possible physical implications of these correlations and their importance in understanding the matter obtained in heavy-ion collisions are discussed. We also present comparison of the results with the commonly used unbound effective potential in the quark sector of this model.
We study the thermodynamic geometry of the Quark-Meson model, focusing on the curvature, $R$, around the chiral crossover at finite temperature and baryon chemical potential. We find a peculiar behavior of $R$ in the crossover region, in which the sign changes and a local maximum develops; in particular, the height of the peak of $R$ in the crossover region becomes large in proximity of the critical endpoint and diverges at the critical endpoint. The appearance of a pronounced peak of $R$ close to the critical endpoint supports the idea that $R$ grows with the correlation volume around the phase transition. We also analyze the mixed fluctuations of energy and baryon number, $langleDelta UDelta Nrangle$, which grow up substantially in proximity of the critical endpoint: in the language of thermodynamic geometry these fluctuations are responsible for the vanishing of the determinant of the metric, which results in thermodynamic instability and are thus related to the appearance of the second order phase transition at the critical endpoint.
It is shown that the endpoint of the first order transition line which merges into a crossover regime in the phase diagram of the Nambu--Jona-Lasinio model, extended to include the six-quark t Hooft and eight-quark interaction Lagrangians, is pushed towards vanishing chemical potential and higher temperatures with increasing strength of the OZI-violating eight-quark interactions. We clarify the connection between the location of the endpoint in the phase diagram and the mechanism of chiral symmetry breaking at the quark level. We show how the 8q interactions affect the number of effective quark degrees of freedom. We are able to obtain the correct asymptotics for this number at large temperatures by using the Pauli-Villars regularization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا