Do you want to publish a course? Click here

Levy walks and scaling in quenched disordered media

221   0   0.0 ( 0 )
 Added by Raffaella Burioni
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Levy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric problem, we obtain the asymptotic behavior of the mean square displacement as a function of the exponent characterizing the scatterers distribution. We demonstrate that in quenched media different average procedures can display different asymptotic behavior. In particular, we estimate the moments of the displacement averaged over processes starting from scattering sites, in analogy with recent experiments. Our results are compared with numerical simulations, with excellent agreement.



rate research

Read More

We make a review of the two principal models that allows to explain the imbibition of fluid in porous media. These models, that belong to the directed percolation depinning (DPD) universality class, where introduced simultaneously by the Tang and Leschhorn [Phys. Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev. A 45, R8313 (1992)] and reviewed by Braunstein et al. [J. Phys. A 32, 1801 (1999); Phys. Rev. E 59, 4243 (1999)]. Even these models have been classified in the same universality class than the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889, (1986)] with quenched noise (QKPZ), the contributions to the growing mechanisms are quite different. The lateral contribution in the DPD models, leads to an increasing of the roughness near the criticality while in the QKPZ equation this contribution always flattens the roughness. These results suggest that the QKPZ equation does not describe properly the DPD models even when the exponents derived from this equation are similar to the one obtained from the simulations of these models. This fact is confirmed trough the deduced analytical equation for the Tang and Leschhorn model. This equation has the same symmetries than the QKPZ one but its coefficients depend on the balance between the driving force and the quenched noise.
We study the relaxation for growing interfaces in quenched disordered media. We use a directed percolation depinning model introduced by Tang and Leschhorn for 1+1-dimensions. We define the two-time autocorrelation function of the interface height C(t,t) and its Fourier transform. These functions depend on the difference of times t-t for long enough times, this is the steady-state regime. We find a two-step relaxation decay in this regime. The long time tail can be fitted by a stretched exponential relaxation function. The relaxation time is proportional to the characteristic distance of the clusters of pinning cells in the direction parallel to the interface and it diverges as a power law. The two-step relaxation is lost at a given wave length of the Fourier transform, which is proportional to the characteristic distance of the clusters of pinning cells in the direction perpendicular to the interface. The stretched exponential relaxation is caused by the existence of clusters of pinning cells and it is a direct consequence of the quenched noise.
We revisit the effects of short-ranged random quenched disorder on the universal scaling properties of the classical $N$-vector model with cubic anisotropy. We set up the nonconserved relaxational dynamics of the model, and study the universal dynamic scaling near the second order phase transition. We extract the critical exponents and the dynamic exponent in a one-loop dynamic renormalisation group calculation with short-ranged isotropic disorder. We show that the dynamics near a critical point is generically slower when the quenched disorder is relevant than when it is not, independent of whether the pure model is isotropic or cubic anisotropic. We demonstrate the surprising thresholdless instability of the associated universality class due to perturbations from rotational invariance breaking quenched disorder-order parameter coupling, indicating breakdown of dynamic scaling. We speculate that this may imply a novel first order transition in the model, induced by a symmetry-breaking disorder.
We consider one-dimensional discrete-time random walks (RWs) with arbitrary symmetric and continuous jump distributions $f(eta)$, including the case of Levy flights. We study the expected maximum ${mathbb E}[M_n]$ of bridge RWs, i.e., RWs starting and ending at the origin after $n$ steps. We obtain an exact analytical expression for ${mathbb E}[M_n]$ valid for any $n$ and jump distribution $f(eta)$, which we then analyze in the large $n$ limit up to second leading order term. For jump distributions whose Fourier transform behaves, for small $k$, as $hat f(k) sim 1 - |a, k|^mu$ with a Levy index $0<mu leq 2$ and an arbitrary length scale $a>0$, we find that, at leading order for large $n$, ${mathbb E}[M_n]sim a, h_1(mu), n^{1/mu}$. We obtain an explicit expression for the amplitude $h_1(mu)$ and find that it carries the signature of the bridge condition, being different from its counterpart for the free random walk. For $mu=2$, we find that the second leading order term is a constant, which, quite remarkably, is the same as its counterpart for the free RW. For generic $0< mu < 2$, this second leading order term is a growing function of $n$, which depends non-trivially on further details of $hat f (k)$, beyond the Levy index $mu$. Finally, we apply our results to compute the mean perimeter of the convex hull of the $2d$ Rouse polymer chain and of the $2d$ run-and-tumble particle, as well as to the computation of the survival probability in a bridge version of the well-known lamb-lion capture problem.
142 - Ihor Lubashevsky 2011
A continuous Markovian model for truncated Levy random walks is proposed. It generalizes the approach developed previously by Lubashevsky et al. Phys. Rev. E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing for nonlinear friction in wondering particle motion and saturation of the noise intensity depending on the particle velocity. Both the effects have own reason to be considered and individually give rise to truncated Levy random walks as shown in the paper. The nonlinear Langevin equation governing the particle motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta method and the obtained numerical data were employed to calculate the geometric mean of the particle displacement during a certain time interval and to construct its distribution function. It is demonstrated that the time dependence of the geometric mean comprises three fragments following one another as the time scale increases that can be categorized as the ballistic regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive one), and the standard motion of Brownian particles. For the intermediate Levy type part the distribution of the particle displacement is found to be of the generalized Cauchy form with cutoff. Besides, the properties of the random walks at hand are shown to be determined mainly by a certain ratio of the friction coefficient and the noise intensity rather then their characteristics individually.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا