No Arabic abstract
High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.
Spin polarization observables of the deuteron photodisintegration at low energies are studied in a pionless effective field theory up to next-to-next-to-leading order (NNLO). The total and differential cross sections, induced neutron polarization $P_{y}$, and tensor analyzing powers $T_{20}$ and $T_{22}$ of the process are calculated at photon energies from the breakup threshold to 20~MeV. We find that the NNLO corrections in the cross sections and $P_{y}$ converge well whereas they turn out to be important contributions in $T_{20}$ and $T_{22}$. We discuss the discrepancy between theory and experiment in $P_{y}$ still persisting as well as an implication of our result to the first measurement of $T_{20}$ at low energies in the HIGS facility.
The experiment was carried out using BINA detector at KVI in Groningen. For the first time an extensive data analysis of the data collected in back part of the detector is presented, where a clusterization method is utilized for angular and energy information. We also present differential cross-sections for the (dd$rightarrow$dpn) breakup reaction within textit{dp} quasi-free scattering limit and their comparison with first calculations based on Single Scattering Approximation (SSA) approach.
Recoil proton polarization observables were measured for both the p($vec {rm e}$,e$^primevec{rm p},$) and d($vec {rm e}$,e$^primevec{rm p},)$n reactions at two values of Q$^2$ using a newly commissioned proton Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The hydrogen and deuterium spin-dependent observables $D_{ellell}$ and $D_{{ell}t}$, the induced polarization $P_n$ and the form factor ratio $G^p_E/G^p_M$ were measured under identical kinematics. The deuterium and hydrogen results are in good agreement with each other and with the plane-wave impulse approximation (PWIA).
We report the first large-acceptance measurement of the beam-spin asymmetry for deuteron photodisintegration ($vec{gamma} dto pn$) in the photon energy range $400<E_{gamma}<630$~MeV. The measurement provides important new constraints on the mechanisms of photodisintegration above the delta resonance and on the photocoupling of the recently discovered $d^*(2380)$ hexaquark.
Precision measurements of vector and tensor analyzing powers of the $^{2}{rm H}(vec d,dp){n}$ break-up process for configurations in the vicinity of the quasi-free scattering regime with the neutron as spectator, are presented. These measurements are performed with a polarized deuteron-beam with an energy of 65 MeV/nucleon impinging on a liquid-deuterium target. The experiment was conducted at the AGOR facility at KVI using the BINA 4$pi$-detection system. Events for which the final-state deuteron and proton are coplanar have been analyzed and the data have been sorted for various momenta of the missing neutron. In the limit of vanishing neutron momentum and at large deuteron-proton momentum transfer, the data agree well with the measured and theoretically predicted spin observables of the elastic deuteron-proton scattering process. The agreement deteriorates rapidly with increasing neutron momentum and/or decreasing momentum transfer from the deuteron beam to the outgoing proton. This study reveals the presence of a significant contribution of final-state interactions even at very small neutron momenta.