Do you want to publish a course? Click here

The occultation events of the Herbig Ae/Be star V1247 Ori

204   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: I study new deep (DeltaV ~ 1.20-1.65 mag) occultation events of the delta Scuti, Herbig Ae/Be star V1247 Ori in the Ori OB1 b association. Methods: I use the V-band ASAS light curve of V1247 Ori, which covers the last nine years, together with photometric data in the near-ultraviolet, visible, near-, and far-infrared taken from the literature. I carry out a periodogram analysis of the cleaned light curve and construct the spectral energy distribution of the star. Results: The star V1247 Ori is interesting for the study of the UX Orionis phenomenon, in which Herbig Ae/Be stars are occulted by their protoplanetary discs, for three reasons: brightness (V ~ 9.85 mag), large infrared excess at 20-100 mum (F_60 ~ 10 Jy), and photometric stability out of occultation (sigma(V) ~ 0.02 mag), which may help to determine the location and spatial structure of the occulting disc clumps.

rate research

Read More

CONTEXT: The study of pulsation in Pre--Main--Sequence intermediate-mass stars represents an important tool for deriving information on fundamental stellar parameters and internal structure, as well as for testing current theoretical models. Interest in this class of variable stars has significantly increased during the last decade and about 30 members are presently known in the literature. AIMS: We have constructed the frequency spectrum of the oscillations in V346 Ori. We apply asteroseismic tools to these data to estimate the intrinsic parameters (mass, luminosity, effective temperature) of V346 Ori and to obtain information on its internal structure. METHODS: CCD time series photometry in the Johnson V filter has been obtained for a total of 145.7 h of observations distributed over 36 nights. The resulting light curves have been subjected to a detailed frequency analysis using updated numerical techniques. Photometric and spectroscopic data have also been acquired to determine reliable estimates of the stellar properties. RESULTS: We have identified 13 oscillation frequencies, 6 of which with higher significance. These have been compared with the predictions of non-radial adiabatic models. The resulting best fit model has a mass of 2.1$pm$0.2 $M_{odot}$, luminosity $log{L/L_{odot}}=1.37^{+0.11}_{-0.13}$, and effective temperature 7300$pm$200 K. These values are marginally consistent with the association of V346 Ori to Orion OB1a. Alternatively, V346 Ori could be placed at a slightly larger distance than previously estimated.
603 - E. Alecian 2009
In this paper we report the results of high-resolution circular spectropolarimetric monitoring of the Herbig Ae star V380 Ori, in which we discovered a magnetic field in 2005. A careful study of the intensity spectrum reveals the presence of a cool spectroscopic companion. By modelling the binary spectrum we infer the effective temperature of both stars: $10500pm 500$ K for the primary, and $5500pm500$ K for the secondary, and we argue that the high metallicity ($[M/H] = 0.5$), required to fit the lines may imply that the primary is a chemically peculiar star. We observe that the radial velocity of the secondarys lines varies with time, while that of the the primary does not. By fitting these variations we derive the orbital parameters of the system. We find an orbital period of $104pm5$ d, and a mass ratio ($M_{rm P}/M_{rm S}$) larger than 2.9. The intensity spectrum is heavily contaminated with strong, broad and variable emission. A simple analysis of these lines reveals that a disk might surround the binary, and that a wind occurs in the environment of the system. Finally, we performed a magnetic analysis using the Least-Squares Deconvolved (LSD) profiles of the Stokes $V$ spectra of both stars, and adopting the oblique rotator model. From rotational modulation of the primarys Stokes $V$ signatures, we infer its rotation period $P=4.31276pm0.00042$ d, and find that it hosts a centred dipole magnetic field of polar strength $2.12pm0.15$ kG, with a magnetic obliquity $beta = 66pm5^{circ}$, and a rotation axis inclination $i=32pm5^{circ}$. However, no magnetic field is detected in the secondary, and if it hosts a dipolar magnetic field, its strength must be below about 500 G, to be consistent with our observations.
The intermediate mass Herbig Ae star V1787 Ori is a member of the L1641 star-forming region in the Orion A molecular cloud. We report the detection of an M-type companion to V1787 Ori at a projected separation of 6.66 (corresponding to 2577 au), from the analysis of VLT/NACO adaptive optics $K_s$-band image. Using astrometric data from Gaia DR2, we show that V1787 Ori A and B share similar distance ($d$ $sim$ 387 pc) and proper motion, indicating that they are physically associated. We estimate the spectral type of V1787 Ori B to be M5 $pm$ 2 from color--spectral type calibration tables and template matching using SpeX spectral library. By fitting PARSEC models in the Pan-STARRS color-magnitude diagram, we find that V1787 Ori B has an age of 8.1$^{+1.7}_{-1.5}$ Myr and a mass of 0.39$^{+0.02}_{-0.05}$ $M_odot$. We show that V1787 Ori is a pre-main sequence wide binary system with a mass ratio of 0.23. Such a low mass ratio system is rarely identified in Herbig Ae/Be binary systems. We conclude this work with a discussion on possible mechanisms for the formation of V1787 Ori wide binary system.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
109 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which suggests that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا