Do you want to publish a course? Click here

Evidence for a compact jet dominating the broadband spectrum of the black hole accretor XTE J1550-564

348   0   0.0 ( 0 )
 Added by David Russell
 Publication date 2010
  fields Physics
and research's language is English
 Authors D. M. Russell




Ask ChatGPT about the research

[abridged] The black hole X-ray binary XTE J1550-564 was monitored extensively at X-ray, optical and infrared wavelengths throughout its outburst in 2000. We show that it is possible to separate the optical/near-infrared (OIR) jet emission from the OIR disc emission. Focussing on the jet component, we find that as the source fades in the X-ray hard state, the OIR jet emission has a spectral index consistent with optically thin synchrotron emission (alpha ~ -0.6 to -0.7, where F_nu propto nu^alpha). This jet emission is tightly and linearly correlated with the X-ray flux; L_OIR,jet propto L_X^(0.98 +- 0.08) suggesting a common origin. This is supported by the OIR, X-ray and OIR to X-ray spectral indices being consistent with a single power law (alpha = -0.73). Ostensibly the compact, synchrotron jet could therefore account for ~ 100 % of the X-ray flux at low luminosities in the hard state. At the same time, (i) an excess is seen over the power law decay of the X-ray flux at the point in which the jet would start to dominate, (ii) the X-ray spectrum slightly softens, which seems to be due to a high energy cut-off or break shifting to a lower energy, and (iii) the X-ray rms variability increases. This may be the strongest evidence to date of synchrotron emission from the compact, steady jet dominating the X-ray flux of an X-ray binary. For XTE J1550-564, this is likely to occur within the luminosity range ~ (2 e-4 - 2 e-3) L_Edd on the hard state decline of this outburst. However, on the hard state rise of the outburst and initially on the hard state decline, the synchrotron jet can only provide a small fraction (~ a few per cent) of the X-ray flux. Both thermal Comptonization and the synchrotron jet can therefore produce the hard X-ray power law in accreting black holes.



rate research

Read More

We explore the accretion properties of the black hole X-ray binary j1550 during its outbursts in 1998/99 and 2000. We model the disk, corona, and reflection components of X-ray spectra taken with the {it Rossi X-ray Timing Explorer} (rxte), using the {tt relxill} suite of reflection models. The key result of our modeling is that the reflection spectrum in the very soft state is best explained by disk self-irradiation, i.e., photons from the inner disk are bent by the strong gravity of the black hole, and reflected off the disk surface. This is the first known detection of thermal disk radiation reflecting off the inner disk. There is also an apparent absorption line at $sim6.9$ keV which may be evidence of an ionized disk wind. The coronal electron temperature ($kT_{rm e}$) is, as expected, lower in the brighter outburst of 1998/99, explained qualitatively by more efficient coronal cooling due to irradiating disk photons. The disk inner radius is consistent with being within a few times the innermost stable circular orbit (ISCO) throughout the bright-hard-to-soft states (10s of $r_{rm g}$ in gravitational units). The disk inclination is low during the hard state, disagreeing with the binary inclination value, and very close to $90^{circ}$ in the soft state, recovering to a lower value when adopting a blackbody spectrum as the irradiating continuum.
59 - V. A. Arefiev 2004
Results of broadband INTEGRAL and RXTE observations of the Galactic microquasar XTE J1550-564 during outburst in spring 2003 are presented. During the outburst the source was found in a canonical low/hard spectral state.
At high luminosities black hole binaries show spectra with a strong disc component accompanied by an equally strong tail where at least some of the electrons are non-thermal. We reanalyze the simultaneous ASCA-RXTE-OSSE data from the 1998 outburst of XTE J1550-564, which span 0.7-1000 keV and remain the best data available of a black hole binary in this state. We reassess the importance of electron-positron pair production using a realistically high value of the source compactness for the first time. The lack of an observable annihilation line together with the observed gamma-ray flux beyond 511 keV constrains the maximum electron Lorentz factor to be leq 10 and the slope of the injected electrons to leq 2.5. We also use the fast (10-50 Hz) variability spectrum to constrain the spatial dependence of the electron heating and acceleration. We find that the spectrum of the fast variability is consistent with being fully thermal, so that the observed non-thermal emission is produced from further out in the flow.
248 - R. K. Jain 2001
We report optical, infrared, and X-ray light curves for the outburst, in 2000, of the black hole candidate XTE J1550-564. We find that the start of the outburst in the H and V bands precedes that seen in the RXTE All Sky Monitor by 11.5 +/- 0.9 and 8.8 +/- 0.6 days, respectively; a similar delay has been observed in two other systems. About 50 days after the primary maxima in the VIH light curves, we find secondary maxima, most prominently in H. This secondary peak is absent in the X-ray light curve, but coincides with a transition to the low/hard state. We suggest that this secondary peak may be due to non-thermal emission associated with the formation of a jet.
X-ray time lags are complicated in nature. The exact reasons for complex lag spectra are yet to be known. However, the hard lags, in general, are believed to be originated due to the inverse Comptonization process. But, the origin of soft lags remained mischievous. Recent studies on Disk-Jet Connections revealed that the jets are also contributing to the X-ray spectral and timing properties in a magnitude which was more than what was predicted earlier. In this article, we first show an exact anti-correlation between X-ray time lag and radio flux for XTE J1550-546 during its 1998 outburst. We propose that the soft lags might be generated due to the change in the accretion disk structure along the line of sight during higher jet activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا