Do you want to publish a course? Click here

Muon-spin relaxation and heat capacity measurements on the magnetoelectric and multiferroic pyroxenes LiFeSi2O6 and NaFeSi2O6

173   0   0.0 ( 0 )
 Added by Peter Baker
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of muon-spin relaxation and heat capacity measurements on two pyroxene compounds LiFeSi2O6 and NaFeSi2O6 demonstrate that despite their underlying structural similarity the magnetic ordering is considerably different. In LiFeSi2O6 a single muon precession frequency is observed below TN, consistent with a single peak at TN in the heat capacity and a commensurate magnetic structure. In applied magnetic fields the heat capacity peak splits in two. In contrast, for natural NaFeSi2O6, where multiferroicity has been observed in zero-magnetic-field, a rapid Gaussian depolarization is observed showing that the magnetic structure is more complex. Synthetic NaFeSi2O6 shows a single muon precession frequency but with a far larger damping rate than in the lithium compound. Heat capacity measurements reproduce the phase diagrams previously derived from other techniques and demonstrate that the magnetic entropy is mostly associated with the build up of correlations in the quasi-one-dimensional Fe3+ chains.



rate research

Read More

We report muon spin relaxation (muSR) and magnetic susceptibility investigations of two Ti3+ chain compounds which each exhibit a spin gap at low temperature, NaTiSi2O6 and TiOCl. From these we conclude that the spin gap in NaTiSi2O6 is temperature independent, with a value of 2*Delta=660(50)K, arising from orbital ordering at Too = 210K; the associated structural fluctuations activate the muon spin relaxation rate up to temperatures above 270K. In TiOCl we find thermally activated spin fluctuations corresponding to a spin gap 2*Delta=420(40)K below Tc1=67K. We also compare the methods used to extract the spin gap and the concentration of free spins within the samples from muSR and magnetic susceptibility data.
We present the results of muon-spin relaxation (muSR) measurements on the hexagonal manganite HoMnO3. Features in the temperature-dependent relaxation rate, lambda, correlate with the magnetic transitions at 76 K, 38 K and 34 K. The highest temperature transition, associated with the ordering of Mn3+ moments has the largest effect on lambda. The application of a static electric field of E=10^4 Vm^-1 below T=50 K causes a small reduction in lambda which is suggestive of coupling between ferroelectric and magnetic domain walls in the ordered state of the material.
Using the transverse field muon spin relaxation technique we measure the temperature dependence of the magnetic field penetration depth $lambda$, in the Na$_{x}$CoO$_{2}cdot y$H$_{2}$O system. We find that $lambda,$ which is determined by superfluid density $n_{s}$ and the effective mass $m^{ast}$, is very small and on the edge of the TF-$mu$SR sensitivity. Nevertheless, the results indicate that the order parameter in this system has nodes and that it obeys the Uemura relation. By comparing $lambda$ with the normal state electron density we conclude that $m^{ast}$ of the superconductivity carrier is 70 times larger than the mass of bare electrons.
The magnetic states of the non-centrosymmetric, pressure induced superconductor CeCoGe3 have been studied with magnetic susceptibility, muon spin relaxation(muSR), single crystal neutron diffraction and inelastic neutron scattering (INS). CeCoGe3 exhibits three magnetic phase transitions at T_N1 = 21 K, T_N2 = 12 K and T_N3 = 8 K. The presence of long range magnetic order below T_N1 is revealed by the observation of oscillations of the asymmetry in the muSR spectra between 13 K and 20 K and a sharp increase in the muon depolarization rate. Single crystal neutron diffraction measurements reveal magnetic Bragg peaks consistent with propagation vectors of k = 2/3 between T_N1 and T_N2, k = 5/8between T_N2 and T_N3 and k = 1/2 below T_N3. An increase in intensity of the (1 1 0) reflection between T_N1 and T_N3 also indicates a ferromagnetic component in these phases. These measurements are consistent with an equal moment, two-up, two-down magnetic structure below T_N3, with a magnetic moment of 0.405(5) mu_B/Ce. Above T_N2, the results are consistent with an equal moment, two-up, one-down structure with a moment of 0.360(6) mu_B/Ce. INS studies reveal two crystal-field (CEF) excitations at 19 and 27 meV. From an analysis with a CEF model, the wave-functions of the J = 5/2 multiplet are evaluated along with a prediction for the magnitude and direction of the ground state magnetic moment. Our model correctly predicts that the moments order along the c axis but the observed magnetic moment of 0.405(5) mu_B is reduced compared to the predicted moment of 1.01 mu_B. This is ascribed to hybridization between the localized Ce^3+ f-electrons and the conduction band. This suggests that CeCoGe3 has a degree of hybridization between that of CeRhGe3 and the non-centrosymmetric superconductor CeRhSi3.
We report muon spin relaxation measurements on two Ti3+ containing perovskites, LaTiO3 and YTiO3, which display long range magnetic order at low temperature. For both materials, oscillations in the time-dependence of the muon polarization are observed which are consistent with three-dimensional magnetic order. From our data we identify two magnetically inequivalent muon stopping sites. The muon spin relaxation results are compared with the magnetic structures of these compounds previously derived from neutron diffraction and muon spin relaxation studies on structurally similar compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا