Do you want to publish a course? Click here

Polynomial invariants of pseudo-Anosov maps

189   0   0.0 ( 0 )
 Added by Keiko Kawamuro
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the structure of the characteristic polynomial det(xI-T) of a transition matrix T that is associated to a train track representative of a pseudo-Anosov map [F] acting on a surface. As a result we obtain three new polynomial invariants of [F], one of them being the product of the other two, and all three being divisors of det(xI-T). The degrees of the new polynomials are invariants of [F ] and we give simple formulas for computing them by a counting argument from an invariant train track. We give examples of genus 2 pseudo-Anosov maps having the same dilatation, and use our invariants to distinguish them.



rate research

Read More

In this paper we provide a negative answer to a question of Farb about the relation between the algebraic degree of the stretch factor of a pseudo-Anosov homeomorphism and the genus of the surface on which it is defined.
We prove that pseudo-Anosov mapping classes are generic with respect to certain notions of genericity reflecting that we are dealing with mapping classes.
We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that this new singular link invariant generalizes the singquandle counting invariant. In particular, using the new polynomial invariant, we can distinguish singular links with the same singquandle counting invariant.
We give explicit pseudo-Anosov homeomorphisms with vanishing Sah-Arnoux-Fathi invariant. Any translation surface whose Veech group is commensurable to any of a large class of triangle groups is shown to have an affine pseudo-Anosov homeomorphism of this type. We also apply a reduction to finite triangle groups and thereby show the existence of non-parabolic elements in the periodic field of certain translation surfaces.
In this paper, we investigate the closure of a large class of Teichmuller discs in the stratum Q(1,1,1,1) or equivalently, in a GL^+_2(R)-invariant locus L of translation surfaces of genus three. We describe a systematic way to prove that the GL^+_2(R)-orbit closure of a translation surface in L is the whole of L. The strategy of the proof is an analysis of completely periodic directions on such a surface and an iterated application of Ratners theorem to unipotent subgroups acting on an ``adequate splitting. This analysis applies for example to all Teichmueller discs stabilized obtained by Thurstons construction with a trace field of degree three which moreover ``obviously not Veech. We produce an infinite series of such examples and show moreover that the favourable splitting situation does not arise everywhere on L, contrary to the situation in genus two. We also study completely periodic directions on translation surfaces in L. For instance, we prove that completely periodic directions are dense on surfaces obtained by Thurstons construction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا