Stochastic process leading to wave equations in dimensions higher than one


Abstract in English

Stochastic processes are proposed whose master equations coincide with classical wave, telegraph, and Klein-Gordon equations. Similar to predecessors based on the Goldstein-Kac telegraph process, the model describes the motion of particles with constant speed and transitions between discreet allowed velocity directions. A new ingredient is that transitions into a given velocity state depend on spatial derivatives of other states populations, rather than on populations themselves. This feature requires the sacrifice of the single-particle character of the model, but allows to imitate the Huygens principle and to recover wave equations in arbitrary dimensions.

Download