No Arabic abstract
Nucleation of a solid in solid is initiated by the appearance of distinct dynamical heterogeneities, consisting of `active particles whose trajectories show an abrupt transition from ballistic to diffusive, coincident with the discontinuous transition in microstructure from a {it twinned martensite} to {it ferrite}. The active particles exhibit intermittent jamming and flow. The nature of active particle trajectories decides the fate of the transforming solid -- on suppressing single particle diffusion, the transformation proceeds via rare string-like correlated excitations, giving rise to twinned martensitic nuclei. These string-like excitations flow along ridges in the potential energy topography set up by inactive particles. We characterize this transition using a thermodynamics in the space of trajectories in terms of a dynamical action for the active particles confined by the inactive particles. Our study brings together the physics of glass, jamming, plasticity and solid nucleation.
We study the nucleation dynamics of a model solid state transformation and the criterion for microstructure selection using a molecular dynamics (MD) simulation. Our simulations show a range of microstructures depending on the depth of quench. We closely follow the dynamics of the solid and find that transient {em non-affine zones} (NAZ) are created at and evolve with the rapidly moving transformation front. The dynamics of these plastic regions determines the selection of microstructure. We formulate an {it elastoplastic model} which couples the elastic strain to the non-affine deformation, and recover all the qualitative features of the MD simulation. Using this model, we construct a dynamical phase diagram for microstructure selection, in addition to making definite testable predictions.
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with different porosities under normal compression stresses. This instability is triggered by a finite jump in the free energy density across the interface, and it leads to the formation of finger-like structures aligned with the principal direction of compaction. The model is proposed as an explanation for the roughening of stylolites - irregular interfaces associated with the compaction of sedimentary rocks that fluctuate about a plane perpendicular to the principal direction of compaction.
We present analytical results and kinetic Monte Carlo simulations for the mobility and microscopic structure of solid-on-solid (SOS) interfaces driven far from equilibrium by an external force, such as an applied field or (electro)chemical potential difference. The interfaces evolve under a specific stochastic dynamic with a local energy barrier (an Arrhenius dynamic), known as the transition dynamics approximation (TDA). We calculate the average height of steps on the interface, the average interface velocity, and the skewness of the interface as functions of the driving force and the height of the energy barrier. We find that the microscopic interface structure depends quite strongly on the barrier height. As the barrier becomes higher, the local interface width decreases and the skewness increases, suggesting increasing short-range correlations between the step heights.
The classical motion of gliding dislocation lines in slip planes of crystalline solid helium leads to plastic deformation even at temperatures far below the Debye temperature and can affect elastic properties. In this work we argue that the gliding of dislocations and plasticity may be the origin of many observed elastic anomalies in solid He-4, which have been argued to be connected to supersolidity. We present a dislocation motion model that describes the stress-strain $tau$-$epsilon$ curves and work hardening rate $dtau/depsilon$ of a shear experiment performed at constant strain rate $dot{epsilon}$ in solid helium. The calculated $dtau/depsilon$ exhibits strong softening with increasing temperature due to the motion of dislocations, which mimics anomalous softening of the elastic shear modulus $mu$. In the same temperature region the motion of dislocations causes dissipation with a prominent peak.
We implement the GW space-time method at finite temperatures, in which the Greens function G and the screened Coulomb interaction W are represented in the real space on a suitable mesh and in imaginary time in terms of Chebyshev polynomials, paying particular attention to controlling systematic errors of the representation. Having validated the technique by the canonical application to silicon and germanium, we apply it to calculation of band gaps in hexagonal solid hydrogen with the bare Greens function obtained from density functional approximation and the interaction screened within the random phase approximation (RPA). The results, obtained from the asymptotic decay of the full Greens function without resorting to analytic continuation, suggest that the solid hydrogen above 250 GPa can not adopt the hexagonal-closed-pack (hcp) structure. The demonstrated ability of the method to store the full G and W functions in memory with sufficient accuracy is crucial for its subsequent extensions to include higher orders of the diagrammatic series by means of diagrammatic Monte Carlo algorithms.