Do you want to publish a course? Click here

Kondo effect and absence of quantum interference effects in the charge transport of cobalt doped iron pyrite

187   0   0.0 ( 0 )
 Added by John DiTusa
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hall effect and resistivity of the carrier doped magnetic semiconductor Fe$_{1-x}$Co$_x$S$_2$ were measured for $0le x le 0.16$, temperatures between 0.05 and 300 K, and fields of up to 9 T. Our Hall data indicate electron charge carriers with a density of only 10 to 30% of the Co density of our crystals. Despite the previous identification of magnetic Griffiths phase formation in the magnetic and thermodynamic properties of this system for the same range of $x$, we measure a temperature independent resistivity below 0.5 K indicating Fermi liquid-like transport. We also observe no indication of quantum corrections to the conductivity despite the small values of the product of the Fermi wave vector and the mean-free-path, $1.5 le k_Fell le 15$, over the range of $x$ investigated. This implies a large inelastic scattering rate such that the necessary condition for the observation of quantum contributions to the carrier transport, quantum coherence over times much longer than the elastic scattering time, is not met in our samples. Above 0.5 K we observe a temperature and magnetic field dependent resistivity that closely resembles a Kondo anomaly for $x$ less than that required to form a long range magnetic state, $x_c$. For $x>x_c$, the resistivity and magnetoresistance resemble that of a spin glass with a reduction of the resistivity by as much as 35% in 5 T fields. We also observe an enhancement of the residual resistivity ratio by almost a factor of 2 for samples with $xsim x_c$ indicating temperature dependent scattering mechanisms beyond simple carrier-phonon scattering. We speculate that this enhancement is due to charge carrier scattering from magnetic fluctuations which contribute to the resistivity over a wide temperature range.



rate research

Read More

Doping of the band insulator FeS$_2$ with Co on the Fe site introduces a small density of itinerant carriers and magnetic moments. The lattice constant, AC and DC magnetic susceptibility, magnetization, and specific heat have been measured over the $0le xle 0.085$ range of Co concentration. The variation of the AC susceptibility with hydrostatic pressure has also been measured in a small number of our samples. All of these quantities show systematic variation with $x$ including a paramagnetic to disordered ferromagnetic transition at $x=0.007pm 0.002$. A detailed analysis of the changes with temperature and magnetic field reveal small power law dependencies at low temperatures for samples near the critical concentration for magnetism, and just above the Curie temperature at higher $x$. In addition, the magnetic susceptibility and specific heat are non-analytic around H=0 displaying an extraordinarily sharp field dependence in this same temperature range. We interpret this behavior as due to the formation of Griffiths phases that result from the quenched disorder inherent in a doped semiconductor.
86 - G. Chiappe , E. Louis 2006
A recent experimental study showed that, distorting a CoPc molecule adsorbed on a Au(111) surface, a Kondo effect is induced with a temperature higher than 200 K. We examine a model in which an atom with strong Coulomb repulsion (Co) is surrounded by four atoms on a square (molecule lobes), and two atoms above and below it representing the apex of the STM tip and an atom on the gold surface (all with a single, half-filled, atomic orbital). The Hamiltonian is solved exactly for the isolated cluster, and, after connecting the leads (STM tip and gold), the conductance is calculated by standard techniques. Quantum interference prevents the existence of the Kondo effect when the orbitals on the square do not interact (undistorted molecule); the Kondo resonance shows up after switching on that interaction. The weight of the Kondo resonance is controlled by the interplay of couplings to the STM tip and the gold surface, and between the molecule lobes.
We calculate the finite temperature and non-equilibrium electric current through systems described generically at low energy by a singlet and emph{two} spin doublets for $N$ and $N pm 1$ electrons respectively, coupled asymmetrically to two conducting leads, which allows for destructive interference in the conductance. The model is suitable for studying transport in a great variety of systems such us aromatic molecules, different geometries of quantum dots and rings with applied magnetic flux. As a consequence of the interplay between interference and Kondo effect, we find changes by several orders of magnitude in the values of the conductance and its temperature dependence as the doublet level splitting is changed by some external parameter. The differential conductance at finite bias is negative for some parameters.
We report results of low-temperature thermodynamic and transport measurements of Pb_{1-x}Tl_{x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude with the Tl concentration. The temperature and field dependence of this upturn are consistent with a charge Kondo effect involving degenerate Tl valence states differing by two electrons, with a characteristic Kondo temperature T_K ~ 6 K. The observation of such an effect supports an electronic pairing mechanism for superconductivity in this material and may account for the anomalously high T_c values.
101 - Peng Li , Baijiang Lv , Yuan Fang 2020
Using angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED), together with density-functional theory (DFT) calculation, we report the formation of charge density wave (CDW) and its interplay with the Kondo effect and topological states in CeSbTe. The observed Fermi surface (FS) exhibits parallel segments that can be well connected by the observed CDW ordering vector, indicating that the CDW order is driven by the electron-phonon coupling (EPC) as a result of the nested FS. The CDW gap is large (~0.3 eV) and momentum-dependent, which naturally explains the robust CDW order up to high temperatures. The gap opening leads to a reduced density of states (DOS) near the Fermi level (EF), which correspondingly suppresses the many-body Kondo effect, leading to very localized 4f electrons at 20 K and above. The topological Dirac cone at the X point is found to remain gapless inside the CDW phase. Our results provide evidence for the competition between CDW and the Kondo effect in a Kondo lattice system. The robust CDW order in CeSbTe and related compounds provide an opportunity to search for the long-sought-after axionic insulator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا