Do you want to publish a course? Click here

Giant planet formation in stellar clusters: the effects of stellar fly-bys

180   0   0.0 ( 0 )
 Added by Moritz Fragner
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The primary aim of this work is to examine the effect of parabolic stellar encounters on the evolution of a Jovian-mass giant planet forming within a protoplanetary disc. We consider the effect on both the mass accretion and the migration history as a function of encounter distance. We use a grid-based hydrodynamics code to perform 2D simulations of a system consisting of a giant planet embedded within a gaseous disc orbiting around a star, which is perturbed by a passing star on a prograde, parabolic orbit. The disc model extends out to 50 AU, and parabolic encounters are considered with impact parameters ranging from 100 - 250 AU. In agreement with previous work, we find that the disc is significantly tidally truncated for encounters < 150 AU, and the removal of angular momentum from the disc by the passing star causes a substantial inflow of gas through the disc. The gap formed by the embedded planet becomes flooded with gas, causing the gas accretion rate onto the planet to increase abruptly. Gas flow through the gap, and into the inner disc, causes the positive inner disc torques exerted on the planet to increase, resulting in a sustained period of outward migration. For weaker interactions, corresponding to an encounter distance of > 250 AU, we find that the planet-disc system experiences minimal perturbation. Our results indicate that stellar fly-bys in young clusters may significantly modify the masses and orbital parameters of giant planets forming within protostellar discs. Planets that undergo such encounters are expected to be more massive, and to orbit with larger semimajor axes, than planets in systems which have not experienced parabolic encounters.



rate research

Read More

We present high-resolution ALMA Band 6 and 7 observations of the tidally disrupted protoplanetary disks of the RW Aurigae binary. Our observations reveal the presence of additional tidal streams to the previously observed tidal arm around RW Aur A. The observed configuration of tidal streams surrounding RW Aur A and B is incompatible with a single star--disk tidal encounter, suggesting that the RW Aurigae system has undergone multiple fly-by interactions. We also resolve the circumstellar disks around RW Aur A and B, with CO radii of 58 au and 38 au consistent with tidal truncation, and 2.5 times smaller dust emission radii. The disks appear misaligned by 12$^{circ}$ or 57$^{circ}$. Using new photometric observations from the American Association of Variable Star Observers (AAVSO) and All Sky Automated Survey for SuperNovae (ASAS-SN) archives, we have also identified an additional dimming event of the primary that began in late 2017 and is currently ongoing. With over a century of photometric observations, we are beginning to explore the same spatial scales as ALMA.
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently discovered GJ~3512b planetary system, where a Jupiter-like planet orbits an $M$-star in a tight and eccentric orbit. Systems such as this one are not predicted by the core accretion theory of planet formation. Here we suggest a novel mechanism, in which the giant planet is born around a more typical Sun-like star ($M_{*,1}$), but is subsequently exchanged during a dynamical interaction with a flyby low-mass star ($M_{*,2}$). We perform state-of-the-art $N$-body simulations with $M_{*,1}=1M_odot$ and $M_{*,2}=0.1M_odot$ to study the statistical outcomes of this interaction, and show that exchanges result in high eccentricities for the new orbit around the low-mass star, while about half of the outcomes result in tighter orbits than the planet had around its birth star. We numerically compute the cross section for planet exchange, and show that an upper limit for the probability per planetary system to have undergone such an event is $Gammasim 4.4(M_{rm c}/100M_odot)^{-2}(a_{rm p}/{rm AU}) (sigma/1,{rm km},{rm s}^{-1})^{5}$Gyr$^{-1}$, where $a_{rm p}$ is the planet semi-major axis around the birth star, $sigma$ the velocity dispersion of the star cluster, and $M_{rm c}$ the total mass of the star cluster. Hence these planet exchanges could be relatively common for stars born in open clusters and groups, should already be observed in the exoplanet database, and provide new avenues to create unexpected planetary architectures.
We investigate the triggering of star formation and the formation of stellar clusters in molecular clouds that form as the ISM passes through spiral shocks. The spiral shock compresses gas into $sim$100 pc long main star formation ridge, where clusters forming every 5-10 pc along the merger ridge. We use a gravitational potential based cluster finding algorithm, which extracts individual clusters, calculates their physical properties and traces cluster evolution over multiple time steps. Final cluster masses at the end of simulation range between 1000 and 30000 M$_{odot}$ with their characteristic half-mass radii between 0.1 pc and 2 pc. These clusters form by gathering material from 10-20 pc size scales. Clusters also show a mass - specific angular momentum relation, where more massive clusters have larger specific angular momentum due to the larger size scales, and hence angular momentum from which they gather their mass. The evolution shows that more massive clusters experiences hierarchical merging process, which increases stellar age spreads up to 2-3 Myr. Less massive clusters appear to grow by gathering nearby recently formed sinks, while more massive clusters with their large global gravitational potentials are increasing their mass growth from gas accretion.
We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26pm 0.19) times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_s = 0.289pm 0.011$, and their projected separation is $s_s = 2.1pm 0.7,$AU, while the projected separation of the planet from the primary is $s_p = 2.2pm 0.8,$AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of $M_{L1} = 0.35^{+0.30}_{-0.20},M_odot$, $M_{L2} = 0.10^{+0.09}_{-0.06},M_odot$, and $m_p = 144^{+126}_{-82},M_oplus$, and the $K$-band magnitude of the combined brightness of the host stars is $K_L = 19.7^{+0.7}_{-1.0}$. The separation between the lens and source system will be $sim 90,$mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations.
The terrestrial planets are believed to have formed by violent collisions of tens of lunar- to Mars-size protoplanets at time t<200 Myr after the protoplanetary gas disk dispersal (t_0). The solar system giant planets rapidly formed during the protoplanetary disk stage and, after t_0, radially migrated by interacting with outer disk planetesimals. An early (t<100 Myr) dynamical instability is thought to have occurred with Jupiter having gravitational encounters with a planetary-size body, jumping inward by ~0.2-0.5 au, and landing on its current, mildly eccentric orbit. Here we investigate how the giant planet instability affected formation of the terrestrial planets. We study several instability cases that were previously shown to match many solar system constraints. We find that resonances with the giant planets help to remove solids available for accretion near ~1.5 au, thus stalling the growth of Mars. It does not matter, however, whether the giant planets are placed on their current orbits at t_0 or whether they realistically evolve in one of our instability models; the results are practically the same. The tight orbital spacing of Venus and Earth is difficult to reproduce in our simulations, including cases where bodies grow from a narrow annulus at 0.7-1 au, because protoplanets tend to radially spread during accretion. The best results are obtained in the narrow-annulus model when protoplanets emerging from the dispersing gas nebula are assumed to have (at least) the Mars mass. This suggests efficient accretion of the terrestrial protoplanets during the first ~10 Myr of the solar system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا