Embedding problems and open subgroups


Abstract in English

We study the properties of the fundamental group of an affine curve over an algebraically closed field of characteristic $p$, from the point of view of embedding problems. In characteristic zero, the fundamental group is free, but in characteristic $p$ it is not even $omega$-free. In this paper we show that it is almost $omega$-free, in the sense that each finite embedding problem has a proper solution when restricted to some open subgroup. We also prove that embedding problems can always be properly solved over the given curve if suitably many additional branch points are allowed, in locations that can be specified arbitrarily; this strengthens a result of the first author.

Download