Do you want to publish a course? Click here

LSST Science Book, Version 2.0

201   0   0.0 ( 0 )
 Added by Michael A. Strauss
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.



rate research

Read More

The Large Synoptic Survey Telescope is designed to provide an unprecedented optical imaging dataset that will support investigations of our Solar System, Galaxy and Universe, across half the sky and over ten years of repeated observation. However, exactly how the LSST observations will be taken (the observing strategy or cadence) is not yet finalized. In this dynamically-evolving community white paper, we explore how the detailed performance of the anticipated science investigations is expected to depend on small changes to the LSST observing strategy. Using realistic simulations of the LSST schedule and observation properties, we design and compute diagnostic metrics and Figures of Merit that provide quantitative evaluations of different observing strategies, analyzing their impact on a wide range of proposed science projects. This is work in progress: we are using this white paper to communicate to each other the relative merits of the observing strategy choices that could be made, in an effort to maximize the scientific value of the survey. The investigation of some science cases leads to suggestions for new strategies that could be simulated and potentially adopted. Notably, we find motivation for exploring departures from a spatially uniform annual tiling of the sky: focusing instead on different parts of the survey area in different years in a rolling cadence is likely to have significant benefits for a number of time domain and moving object astronomy projects. The communal assembly of a suite of quantified and homogeneously coded metrics is the vital first step towards an automated, systematic, science-based assessment of any given cadence simulation, that will enable the scheduling of the LSST to be as well-informed as possible.
203 - J. Anthony Tyson 2010
Over the past decade, sky surveys such as the Sloan Digital Sky Survey have proven the power of large data sets for answering fundamental astrophysical questions. This observational progress, based on a synergy of advances in telescope construction, detectors, and information technology, has had a dramatic impact on nearly all fields of astronomy, and areas of fundamental physics. The next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. The hardware and computational technical challenges and the exciting science opportunities are attracting scientists and engineers from astronomy, optics, low-light-level detectors, high-energy physics, statistics, and computer science. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. This will be particularly true of discoveries emerging from a new generation of sky surveys. Imaging data from large ground-based active optics telescopes with sufficient etendue can address many scientific missions simultaneously. These new investigations will rely on the statistical precision obtainable with billions of objects. For the first time, the full sky will be surveyed deep and fast, opening a new window on a universe of faint moving and distant exploding objects as well as unraveling the mystery of dark energy.
The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMTs science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA).
Building on the experience of the high-resolution community with the suite of VLT high-resolution spectrographs, which has been tremendously successful, we outline here the (science) case for a high-fidelity, high-resolution spectrograph with wide wavelength coverage at the E-ELT. Flagship science drivers include: the study of exo-planetary atmospheres with the prospect of the detection of signatures of life on rocky planets; the chemical composition of planetary debris on the surface of white dwarfs; the spectroscopic study of protoplanetary and proto-stellar disks; the extension of Galactic archaeology to the Local Group and beyond; spectroscopic studies of the evolution of galaxies with samples that, unlike now, are no longer restricted to strongly star forming and/or very massive galaxies; the unraveling of the complex roles of stellar and AGN feedback; the study of the chemical signatures imprinted by population III stars on the IGM during the epoch of reionization; the exciting possibility of paradigm-changing contributions to fundamental physics. The requirements of these science cases can be met by a stable instrument with a spectral resolution of R~100,000 and broad, simultaneous spectral coverage extending from 370nm to 2500nm. Most science cases do not require spatially resolved information, and can be pursued in seeing-limited mode, although some of them would benefit by the E-ELT diffraction limited resolution. Some multiplexing would also be beneficial for some of the science cases. (Abridged)
An updated Science Vision for the SOFIA project is presented, including an overview of the characteristics and capabilities of the observatory and first generation instruments. A primary focus is placed on four science themes: The Formation of Stars and Planets, The Interstellar Medium of the Milky Way, Galaxies and the Galactic Center and Planetary Science.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا